【图像分割SOTA】训练自己数据集实战目录

本文档详细介绍了从入门到进阶的图像分割实战过程,涵盖了语义分割的多个主流模型,如mask_rcnn、deeplab3+、HRNet、Unet,并且包括2022年的最新SOTA模型SegNext的训练实践。同时,还分享了构建图像分割框架和参加kaggle分割比赛的金牌实战经验。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

入门到进阶放弃,全程实战目录

图像分割主要有:语义分割、实力分割、全景分割,本系列主要以工程项目里最常见的语义分割为主。
1 mask_rcnn_detron2_训练自己数据集实战

2 deeplab3+_pytorch_训练自己数据集实战

3 HRNet_训练自己数据集实战

4 Unet_训练自己数据集实战

5 2022最新SOTA_SegNext_训练自己数据集实战

6 进阶放弃_构建图像分割框架实战

7 进阶放弃_kaggle分割比赛金牌实战分享

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小菜学AI

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值