解决one-stage目标检测正负样本不均衡的另类方法--Gradient Harmonized

正负样本不均衡问题一直是One-stage目标检测中被大家所诟病的地方,He Keming等人提出了Focal Loss来解决这个问题。而AAAI2019上的一篇论文《Gradient Harmonized Single-stage Detector》则尝试从梯度分部的角度,来解释样本分步不均衡给目one-stage目标检测带来的瓶颈本质,并尝试提出了一种新的损失函数:GHM(Gradient Harmonizing Mechanism)来解决这个问题。

Gradient Norm

Cross Entropy Loss是分类中常用的一种损失,其表达式:

其中p=sigmoid(x)p^*为类别的真实标签,如果L_C_Ex求导,可以得到下列式子:

可以定义g为:

这里的g被定义为梯度模长gradient norm。直观表示上看,g表明了样本的真实值与当前预测值的距离。观测下图,下图是一个one-stage模型收敛后画出的梯度模长分布图。横坐标为gradient norm,纵坐标可以理解为数据分部的比例(做了log scale)。画红框的部分为easy examples,对应着横坐标有着非常低的gradient norm,可以看到easy examples的梯度模长非常小,表明了这些样本的真实值和预测值非常接近了,但是其数量所占比例非常大,其实这部分easy example对于模型的提升效果非常小。

同时注意画绿框的部分,这部分为样本中的very hard example,文中认为,这部分样本同样对模型的提升效果没有帮助,这部分样本同样也有着非常大的比例。其实我们需要关注的应该是中间部分的样本(既不是easy example也不是very hard example),这些样本对模型的提升更有帮助。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值