正负样本不均衡问题一直是One-stage目标检测中被大家所诟病的地方,He Keming等人提出了Focal Loss来解决这个问题。而AAAI2019上的一篇论文《Gradient Harmonized Single-stage Detector》则尝试从梯度分部的角度,来解释样本分步不均衡给目one-stage目标检测带来的瓶颈本质,并尝试提出了一种新的损失函数:GHM(Gradient Harmonizing Mechanism)来解决这个问题。
Gradient Norm
Cross Entropy Loss是分类中常用的一种损失,其表达式:
其中,
为类别的真实标签,如果
对
求导,可以得到下列式子:
可以定义g为:
这里的g被定义为梯度模长gradient norm。直观表示上看,g表明了样本的真实值与当前预测值的距离。观测下图,下图是一个one-stage模型收敛后画出的梯度模长分布图。横坐标为gradient norm,纵坐标可以理解为数据分部的比例(做了log scale)。画红框的部分为easy examples,对应着横坐标有着非常低的gradient norm,可以看到easy examples的梯度模长非常小,表明了这些样本的真实值和预测值非常接近了,但是其数量所占比例非常大,其实这部分easy example对于模型的提升效果非常小。
同时注意画绿框的部分,这部分为样本中的very hard example,文中认为,这部分样本同样对模型的提升效果没有帮助,这部分样本同样也有着非常大的比例。其实我们需要关注的应该是中间部分的样本(既不是easy example也不是very hard example),这些样本对模型的提升更有帮助。