llama.cpp将sensor格式的大模型转化为gguf格式

前言

ollama本地只能导入gguf格式的大模型文件,将safetensors 文件转化为gguf格式。需要使用 llama.cpp 这个开源工具。以下是使用 llama.cpp 转换 .safetensors 格式模型到 .gguf 格式的详细步骤:

1. 首先克隆并编译 llama.cpp:

克隆项目

git clone https://github.com/ggerganov/llama.cpp
cd llama.cpp

安装依赖(Ubuntu/Debian系统为例)

sudo apt-get install python3-pip cmake

安装 Python 依赖

pip install -r requirements.txt

编译项目

make

2. 准备转换环境:

安装必要的 Python 包

pip install torch transformers safetensors sentencepiece

3. 转换模型步骤:

基本转换命令

python3 convert.py \
    --outfile 输出文件路径.gguf \
    --outtype q4_k_m \
    --model 输入模型路径

例如转换 Qwen 模型

python3 convert.py \
    --outfile qwen.gguf \
    --outtype q4_k_m \
    --model Qwen/Qwen-7B

4. 常用转换参数说明:

  • –outfile: 指定输出的 gguf 文件路径
  • –outtype: 指定量化类型,常用选项:
    • q4_k_m: 4-bit 量化,平衡速度和质量
    • q8_0: 8-bit 量化,更高质量但更大
    • f16: 16-bit,无损但体积最大
  • –model: 输入模型路径

5. 注意事项:

  • 确保有足够的磁盘空间(通常需要模型大小2-3倍的空间)
  • 转换过程可能较慢,需要耐心等待
  • 建议使用 GPU 进行转换,可以加快速度
  • 转换完成后记得验证模型是否能正常工作

6. 验证转换后的模型:

使用 llama.cpp 的主程序测试

./main -m 转换后的模型.gguf -n 128
常见问题解决:

  1. 内存不足:
  • 尝试使用更小的批处理大小
  • 使用更激进的量化方案
  1. 转换失败:
  • 检查模型格式是否支持
  • 更新 llama.cpp 到最新版本
  • 检查依赖是否完整
  1. 模型加载失败:
  • 检查生成的 gguf 文件完整性
  • 验证量化参数是否合适
    这个过程完成后,你就可以在支持 gguf 格式的框架(如 Ollama)中使用这个模型了。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值