一步步解析ChatGPT:从头训练或者微调GPT模型,实现差异化AI助手的定制

本文介绍了如何从头训练或微调GPT模型,以创建独特的AI助手。通过语料库下载、处理、模型文件获取及训练,详细阐述了大语言模型的构建流程。虽然训练需要专业知识和硬件支持,但了解整个过程对于有效应用模型至关重要。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一 起因

其实现在大语言模型能够发展起来的起因就是现如今有了许多高质量料库,可以对模型进行训练。然而,这些语料库都是开源,因而对应模型训练的结果也都是一样的。那么,我们该如何从头训练或者微调自己的模型,生成极具个性化的AI助手或者写作助手呢?

二 正文

当然,本文其实无法做那么深入的从头训练和微调模型的解析。一方面,这种微调和训练需要非常强的专业知识和高端的硬件支持。笔者作为一个生信分析方面的研究人员,两者都没有,硬件的话目前也就是有一个3060Ti而已,所以只能做到初级的微调。不过,随着开源社区的进一步发展,相信未来的微调或训练都将不停留在专家级,而是像现在的许多深度学习算法一样,可以自动微调。

下面将从语料库,模型,训练代码和输出结果四个环节依次介绍。

2.1 语料库下载

既然我们要从头训练或者微调模型,那么我们需要先实现准备好语料库,并进行处理。这里我们使用的语料库是来自PMC

具体介绍为:欧洲PMC作者手稿合集由作者手稿形式的文章组成,这些文章已按照欧洲PMC资助者政策以及美国国立卫生研究院(NIH)和其他参与PMC的资助者的公共访问政策,在欧洲PMC和PubMed Central (PMC)上提供。文集中的手稿文本可以 XML 和纯文本格式下载。 

https:
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

智能体格

你的鼓将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值