295. 数据流的中位数

博客围绕设计支持添加整数和求中位数操作的数据结构展开。使用大顶堆和小顶堆存储数据,根据堆大小和元素关系调整元素分布以计算中位数,找中位数复杂度为O(1),加元素为O(logN),还提及了在特定整数范围下的算法优化思路。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目描述: 

中位数是有序列表中间的数。如果列表长度是偶数,中位数则是中间两个数的平均值。

例如,

[2,3,4] 的中位数是 3

[2,3] 的中位数是 (2 + 3) / 2 = 2.5

设计一个支持以下两种操作的数据结构:

  • void addNum(int num) - 从数据流中添加一个整数到数据结构中。
  • double findMedian() - 返回目前所有元素的中位数。

示例:

addNum(1)
addNum(2)
findMedian() -> 1.5
addNum(3) 
findMedian() -> 2

进阶:

  1. 如果数据流中所有整数都在 0 到 100 范围内,你将如何优化你的算法?
  2. 如果数据流中 99% 的整数都在 0 到 100 范围内,你将如何优化你的算法?

算法:

  • 使用一个大顶堆和一个小顶堆分别存储一般数据,维持最大堆堆顶比最小堆堆顶小
  • 分析最小堆里的数据均比最大堆里面数据大,且堆顶正好可以推出中间值。
  • 总数据流为偶数,则两个堆一样大,中位数就是取平均两个堆顶。
  • 总数据流为奇数,则两个堆谁大一个,中位数就是这个堆堆顶。

保证最大堆堆顶小于最小堆堆顶

  1. 情况1,两个堆size一样,新元素<最大堆堆顶,压入最大堆,否则压入最小堆
  2. 情况2,最大堆比最小堆多一个元素
    • 新元素>最大堆堆顶,直接压入最小堆维持平衡
    • 新元素<最大堆堆顶,此时复杂,将最大堆堆顶push到最小堆,再pop最大堆,最后压入新元素到最大堆
  3. 情况3,最大堆比最小堆少一个元素
    • 新元素<最小堆堆顶,直接压入最大堆
    • 新元素>最小堆堆顶,最小堆堆顶push到最大堆,然后pop最小堆,最后压入新元素到最小堆

返回值就是size相同,堆顶加和/2,否则谁size大,返回谁堆顶
复杂度:找中位数O(1),加元素O( logN)

class MedianFinder {
    priority_queue<int, vector<int>, less<int>>q1;
    priority_queue<int, vector<int>, greater<int>>q2;
public:
    /** initialize your data structure here. */
    MedianFinder() {
        
    }
    
    void addNum(int num) {
        if(((q1.size() + q2.size()) % 2) == 0)
        {
            if(q2.empty())
                q2.push(num);
            else if(num < q1.top())
            {
                q2.push(q1.top());
                q1.pop();
                q1.push(num);
            }
            else
                q2.push(num);
        }
        else
        {
            if(num > q2.top())
            {
                q1.push(q2.top());
                q2.pop();
                q2.push(num);
            }
            else
            {
                q1.push(num);
            }
        }
    }
    
    double findMedian() {
        if(((q1.size() + q2.size()) % 2) == 0)
        {
            if(q1.size() + q2.size() == 0)
                return 0.0;
            else
                return ((q1.top() + q2.top()) / 2. );
        }
        else
            return (double)q2.top();
    }
};

/**
 * Your MedianFinder object will be instantiated and called as such:
 * MedianFinder* obj = new MedianFinder();
 * obj->addNum(num);
 * double param_2 = obj->findMedian();
 */

关于进阶:

参考:Leetcode:数据流的中位数

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值