SketchSplat: 3D Edge Reconstruction via Differentiable Multi-view Sketch Splatting

一、核心问题与创新点

问题背景
  • 传统方法缺陷
    现有方法(如LIMAP、EdgeGS)先重建3D边缘点集,再拟合参数化边缘(线/曲线)。此流程存在两大问题:
    1. 点集噪声导致拟合边缘断裂(图1b)
    2. 拟合过程脱离2D图像监督,导致3D边缘与多视角图像对齐不佳
  • 关键需求
    实现端到端的参数化边缘优化,确保3D边缘直接受2D图像约束,提升重建的完整性与准确性。
创新突破
  • 可微草图溅射(Differentiable Sketch Splatting)
    将3D边缘表示为参数化草图(线/曲线),通过可微渲染实现从3D参数到2D图像的梯度反传。
  • 自适应拓扑控制
    动态合并/过滤草图,解决冗余和断裂问题。
  • 2DGS-SN边缘检测器
    融合深度图与法向图梯度,提升边缘检测精度。

二、方法架构

1. 3D草图表示
  • 几何参数
    • 直线:2个端点坐标 $l \in \mathbb{R}^{2\times3}$
    • 三阶贝塞尔曲线:4个控制点 $c \in \mathbb{R}^{4\times3}$
  • 属性参数
    • 透明度 $o \in \mathbb{R}$
    • 局部尺度 $s \in \mathbb{R}^3$(控制边缘厚度)
  • 初始化
    从EdgeGS输出提取初始草图,继承其完整覆盖性优势。
2. 可微优化流程

  • 关键步骤
    1. 采样:沿草图每5mm采样高斯点,继承草图属性 $(o, s)$
    2. 渲染:使用3DGS式溅射渲染(公式1),生成2D边缘图 $E^*$
    3. 损失函数
      $\mathcal{L}_{\text{render}} = \| E^* - E_{\text{gt}} \|_1$
    4. 梯度反传:通过自动微分更新草图几何参数 $(l, c)$ 及属性 $(o, s)$
3. 自适应拓扑控制
  • 端点合并:距离 < 10mm 的端点合并)。
  • 重叠草图合并:覆盖率 > 80% 的草图合并。
  • 共线草图合并:方向偏差 < 5° 且投影偏移 < 10mm 的直线合并。
  • 草图过滤:训练后移除多视角不可见草图(>50%点不可见)。
  • 作用
    • 边缘数减少68%
    • 解决断裂问题
4. 2DGS-SN边缘检测器
  • 设计原理
    结合前景掩码 $A$、深度图 $D$、法向图 $N$,生成更鲁棒的边缘:
    $E = G_f * \left( A \vee (g(D) > t_d) \vee (g(N) > t_n) \right)$
    • $g(\cdot)$:Sobel算子计算梯度
    • $G_f$:高斯滤波平滑边界

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

真的不想学习啦

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值