一、核心问题与创新点
问题背景
- 传统方法缺陷:
现有方法(如LIMAP、EdgeGS)先重建3D边缘点集,再拟合参数化边缘(线/曲线)。此流程存在两大问题:- 点集噪声导致拟合边缘断裂(图1b)
- 拟合过程脱离2D图像监督,导致3D边缘与多视角图像对齐不佳
- 关键需求:
实现端到端的参数化边缘优化,确保3D边缘直接受2D图像约束,提升重建的完整性与准确性。
创新突破
- 可微草图溅射(Differentiable Sketch Splatting):
将3D边缘表示为参数化草图(线/曲线),通过可微渲染实现从3D参数到2D图像的梯度反传。 - 自适应拓扑控制:
动态合并/过滤草图,解决冗余和断裂问题。 - 2DGS-SN边缘检测器:
融合深度图与法向图梯度,提升边缘检测精度。
二、方法架构
1. 3D草图表示
- 几何参数:
- 直线:2个端点坐标
- 三阶贝塞尔曲线:4个控制点
- 直线:2个端点坐标
- 属性参数:
- 透明度
- 局部尺度
(控制边缘厚度)
- 透明度
- 初始化:
从EdgeGS输出提取初始草图,继承其完整覆盖性优势。
2. 可微优化流程
- 关键步骤:
- 采样:沿草图每5mm采样高斯点,继承草图属性
。
- 渲染:使用3DGS式溅射渲染(公式1),生成2D边缘图
。
- 损失函数:
- 梯度反传:通过自动微分更新草图几何参数
及属性
。
- 采样:沿草图每5mm采样高斯点,继承草图属性
3. 自适应拓扑控制
- 端点合并:距离 < 10mm 的端点合并)。
- 重叠草图合并:覆盖率 > 80% 的草图合并。
- 共线草图合并:方向偏差 < 5° 且投影偏移 < 10mm 的直线合并。
- 草图过滤:训练后移除多视角不可见草图(>50%点不可见)。
- 作用:
- 边缘数减少68%
- 解决断裂问题
4. 2DGS-SN边缘检测器
- 设计原理:
结合前景掩码、深度图
、法向图
,生成更鲁棒的边缘:
:Sobel算子计算梯度
:高斯滤波平滑边界