图解RNN

本文深入探讨了循环神经网络(RNN)的工作原理,通过RNN在语言模型中的应用来阐述其如何处理序列数据。通过图表解析,解释了RNN的网络结构和参数共享,揭示了其在长序列处理上的局限性,并提及了LSTM和GRU等变种网络对此问题的解决方案。此外,文章还简单讨论了RNN模型容量与参数数量的关系。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

循环神经网络(recurrent neural network)或RNN是一类用于处理序列数据的神经网络。就像卷积网络是专门用于处理网格化数据(如一个图像)的神经网络,循环神经网络是专门用于处理序列x1,... xt 的神经网络。本文将通过语言模型中RNN的应用来浅谈自己对RNN的理解。


图1 RNN展开图

上图表示一个RNN的展开图,其中,X为输入,隐层是S,输出是O。RNN输入到隐藏的连接由权重矩阵U 参数化,隐藏到隐藏的循环连接由权重矩阵W 参数化以及隐藏到输出的连接由权重矩阵V 参数化。

如果输入序列是一个句子,那么xi对应的就是输入的每个词,如对于“我们是中国人”这句话,输入将会是:x1="我们",x2=“是”,x3=“中国人”;不过一般都将这些词处理,变为一个固定维度的词向量输入。我们在看看只有一个输出的RNN


图2 单一输出的RNN

如果xt+1是句子的最后一个词,那么

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值