1.DeepSeek-R1+Dify+Bge-m3+CentOS7.9搭建本地专属知识库

1.介绍

        部署本地DeepSeek+本地知识库,将现有的内部项目测试相关资料上传,构建测试领域模型。笔记本电脑配置较低,不能一起部署DeepSeeK+Dify。在现有服务器上创建虚拟机进行部署,尝试使用。

2.系统准备

2.1服务器介绍

硬件服务器:40核/256G服务器+CentOS7.9+KVM虚拟机

本次使用虚拟机配置:CPU:>16(实际配置32),

                                    内存:>32G(实际配置64),

                                    存储:400G

                                    操作系统:CentOS7.9+最小化部署+开发相关软件

2.2操作系统设置

1.关闭Seliunx和防火墙

#防火墙关闭和禁用开机启动
systemctl disable firewalld
systemctl stop firewalld
#永久关闭selinux:
vi /etc/selinux/config  SELINUX=disabled
#临时关闭selinux:
setenforce 0

2.配置国内ali-yum源

# yum源配置
curl -o /etc/yum.repos.d/CentOS-Base.repo https://mirrors.aliyun.com/repo/Centos-7.repo
curl -o /etc/yum.repos.d/docker-ce.repo http://mirrors.aliyun.com/docker-ce/linux/centos/docker-ce.repo
yum install epel-release -y
yum install fuse-overlayfs

#安装wget测试yum源:
yum install wget

2.3安装docker、docker-compose

安装docker及docker-compose(版本要求:Docker 19.03 or later Docker Compose 1.28 or later)

#安装docker:
yum install -y yum-utils device-mapper-persistent-data lvm2 docker
yum-config-manager --add-repo http://mirrors.aliyun.com/docker-ce/linux/centos/docker-ce.repo
yum makecache fast
#安装docker-compose,需要版本大于1.28
curl -L "https://github.com/docker/compose/releases/download/1.29.2/docker-compose-$(uname -s)-$(uname -m)" -o /usr/bin/docker-compose
chmod +x /usr/local/bin/docker-compose

#配置开机启动
systemctl enable docker 
systemctl start docker

# 验证docker及docker-compose服务OK
systemctl status docker

docker-compose -v
docker-compose version 1.29.2, build 5becea4c

2.4docker配置国内镜像源

vi /etc/docker/daemon.json 创建文件,配置内容

vi /etc/docker/daemon.json #配置json
{
    "registry-mirrors": [
        "https://自己的阿里云加速器id.mirror.aliyuncs.com",
        "https://dockerproxy.com",
        "https://mirror.baidubce.com",
        "https://docker.m.daocloud.io",
        "https://docker.nju.edu.cn",
        "https://docker.mirrors.sjtug.sjtu.edu.cn",
        "https://do.nark.eu.org",
        "https://dc.j8.work",
        "https://docker.m.daocloud.io",
        "https://dockerproxy.com",
        "https://docker.mirrors.ustc.edu.cn",
        "https://docker.nju.edu.cn"
    ]
}

systemctl daemon-reload 
systemctl restart docker

3.安装ollama及DeepSeek模型

3.1安装ollama

1.在线安装:Download Ollama on Linux   ,直接运行:

curl -fsSL https://ollama.com/install.sh | sh

PS:因我的服务器到github网络带宽原因,执行时间过长且多次都未成功,使用离线安装方式进行。

2.离线安装ollama

  1. 登录https://github.com/ollama/ollama/releases  ,下载当前最新版本0.5.12  ollama-linux-amd64.tgz
  2. 上传服务器/opt/ollama目录及解压
    mkdir /opt/ollama
    tar -xzf ollama-linux-amd64.tgz
  3. 配置ollama服务文件
    # 创建启动文件
    vi /etc/systemd/system/ollama.service
    
    [Unit]
    Description=Ollama Service
    After=network-online.target
    
    
    [Service]
    ExecStart=/opt/ollama/bin/ollama serve
    User=root
    Group=root
    Restart=always
    RestartSec=3
    Environment="PATH=$PATH"
    
    
    # 指定模型存储位置
    Environment="OLLAMA_MODELS=/opt/ollama/models"
    
    # 配置ollama非本机IP访问
    Environment="OLLAMA_HOST=0.0.0.0:11434"
    
    
    [Install]
    WantedBy=default.target
    
    
    
    
    #修改完之后,刷新
    systemctl daemon-reload
  4. 配置环境变量

  5. vi /etc/profile.d/ollama.sh
    #ollama.sh内容如下
    PATH=$PATH:/opt/ollama/bin
    export PATH
    
    #刷新 
    source /etc/profile
  6. 启动以及设置开机启动

    systemctl enable ollama 
    
    systemctl start ollama 
    
    systemctl status ollama 
    
    # systemctl stop ollama ##关闭
    
    # systemctl restart ollama  ##重启

   6. 验证ollama

ollama -v

3.2下载DeepSeek等模型

Ollama Search 找到对应模拟命令进行下载

#安装deepseek的默认版本:7b
ollama run deepseek-r1
#安装向量模型
ollama pull bge-m3

查看安装模型

查看运行中的模型

4.Dify部署

4.1Dify部署

参考官方部署文档:Docker Compose 部署 | Dify

git clone https://github.com/langgenius/dify.git
cd /opt/dify/docker 
cp .env.example .env 
docker compose up -d

http://192.168.100.219/install   安装地址

http://192.168.100.219  登录地址

4.2 Dify参数配置

cd /opt/dify/docker

vi .env   #修改配置详见截图
#上传文件大小数量限制
# Upload file size limit, default 15M.
UPLOAD_FILE_SIZE_LIMIT=250

# The maximum number of files that can be uploaded at a time, default 5.
UPLOAD_FILE_BATCH_LIMIT=100

#重启dify所有服务,使修改配置生效
docker compose down
docker compose up -d

5.Dify配置DeepSeek等模型

5.1 添加DeepSeek+bge-m3模型

dify系统右上角--点击用户名---点击“设置”---选择模型供应商“ollama”

5.2 对接硅基流动(可选)

硅基流动统一登录  注册,创建API密钥

5.3配置dify模型设置

6.知识库导入及使用

6.1创建知识库及上传资料

6.2创建聊天助手

【角色设定】作为资深测试工程师
【详细任务描述】为xx项目集成测试写一份测试方案与计划。旨在指导测试团队明确测试目的、测试范围、测试计划、测试策略和重点、以及交付哪些交付件,和项目测试中可能出现的风险。测试时间25个工作日,测试环境分为功能测试环境、非功能(性能、稳定性、长拷)测试环境两套。要求必须进行安装部署测试和法语的本地化测试。
【关键信息补充】分多个一级标题,多个二级、三级标题,测试方案设计详细、清晰、简洁明了。
【期望输出要求】给出详细测试方案,3000字左右

使用结论:

1.已经引用了自己配置知识库,可以在不联网情况下使用DeepSeek;

2.使用deepseek-r1:7b 小型模型,因服务器无显卡、纯CPU,在进行使用时,32核基本上全部90%以上;

3.输出效果,现在使用未达到想要的效果,需要继续研究下。

7.后续

待进行

### DeepSeek 本地部署教程 #### 准备工作 为了成功在本地环境中部署DeepSeek并配置知识库,需完成如下准备工作: 对于 Windows 平台而言,确保已安装 Docker 环境,并能够正常运行容器化应用程序[^1]。 #### 部署过程 按照官方指导文档操作,具体步骤包括但不限于克隆项目仓库到本地计算机。例如,在命令行工具中执行以下 Git 命令获取最新版本的 Dify 源码: ```bash git clone https://github.com/langgenius/dify.git ``` 进入刚下载下来的 `dify` 文件夹下的 `docker` 子目录继续后续设置: ```bash cd dify/docker ``` 创建 `.env` 文件用于存储必要的环境变量参数,这一步可以通过复制模板文件实现: ```bash cp .env.example .env ``` 编辑新生成的 `.env` 文件,依据实际情况调整各项配置项,比如端口号、数据库连接字符串等信息[^4]。 启动服务之前建议先阅读官方提供的 README.md 或其他辅助说明材料了解更多细节和注意事项。 #### 设置知识库DeepSeek 成功上线之后就可以着手建立专属知识库了。通过图形界面或者 API 接口上传所需资料集,如 CSS 技术文档等内容资源。这些数据会被索引处理以便于日后查询检索使用[^2]。 针对特定主题发起询问时只需简单描述需求即可触发系统自动匹配相关内容片段作为回应的一部分展示出来。例如:“请根据知识库的内容,看看CSS如何模拟真实的进度条?”这样的问题就能够得到针对性解答。 另外还存在一种更为灵活的方式——利用 AnythingLLM 工具来自定义构建更加贴合业务场景的需求型知识库。这种方式允许用户事先准备好一批结构化的文本素材供模型学习理解后再开展交互交流活动[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

测试老吴

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值