解决复杂路由与最优控制问题的创新方法
在工程应用和最优控制领域,复杂的路由问题和全局极值搜索一直是极具挑战性的难题。本文将深入探讨解决这些问题的创新方法,包括带约束路由问题的优化以及随机覆盖算法在最优控制问题中的应用。
带约束路由问题的优化
带约束的路由问题在实际生活中广泛存在,例如核电厂辐射源的拆除过程。在这个过程中,工人拆除辐射源的顺序和移动轨迹会影响其接受的辐射剂量,这就形成了一个实际的极值问题。
传统的动态规划(DP)程序虽然能定义精确解的结构,但对于大规模的路由问题,其计算成本变得几乎不可行。因此,启发式方法被广泛应用。不过,DP仍可用于局部改进,例如考虑单个插入和迭代程序,通过DP获得局部最优解。
另一种局部改进的方法是采用多插入和并行算法。实验表明,对于足够大维度的初始路由问题,优化多插入的程序能显著改善结果。
下面是对该优化方法的详细分析:
- 算法性能 :计算时间为84,603秒,使用的RAM量为128,248 MB。该算法表现出良好的性能和效率,证明了其在某些任务中的适用性,而其他算法可能无法找到最优解。
- 实现方式 :我们使用更复杂的DP程序,与旅行商问题(TSP)和带优先约束的旅行商问题(TSP - PC)的DP程序不同。为了在可行范围内进行优化,我们对每次插入使用精确算法,并努力“最优地”实现全局DP的变体。在这种实现下,我们能够使用并行且独立的计算程序。
随机覆盖算法解决应用最优控制问题
全局极值搜索在最优控制问题中仍然是最困难的极值问题之一。目前,在最优控制理论中,尚未找