二次无约束二进制优化:量子退火在离散投资组合优化中的应用
1. 二次无约束二进制优化(QUBO)概述
二次无约束二进制优化(QUBO)是量子退火的一个典型用例,这主要归因于以下特性:
- 量子退火器基于二进制自旋变量运行,逻辑量子比特表示的二进制决策变量与自旋变量之间的映射简单直接。
- 二次优化问题的目标函数仅包含线性和二次项,这极大地简化了模型,使其能够嵌入现有的量子退火硬件中。
- 无约束优化意味着虽然QUBO允许指定条件,但这些并非严格约束。违反约束会在QUBO目标函数的额外项中受到惩罚,但仍有可能找到违反指定约束的解。
许多重要的NP难组合优化问题都存在QUBO形式,如离散投资组合优化问题。一些经典方法也被用于解决离散投资组合优化问题,如Vaezi等人提出的背包问题公式化方法,以及Anagnostopoulos和Mamanis应用的遗传算法等进化搜索方法。
2. 二次无约束二进制优化的原理
2.1 QUBO问题定义
QUBO表示一类优化问题,其中N个二进制变量$q_1, \ldots, q_N$的二次函数需要在其所有可能的$2^N$种赋值中进行最小化。该函数被称为成本函数,可表示为:
[
L_{QUBO}(q) = \sum_{i=1}^{N} a_i q_i + \sum_{i=1}^{N} \sum_{j=i+1}^{N} b_{ij} q_i q_j
]
其中$q := (q_1, \ldots, q_N) \in {0, 1}^N$表示N个二进制决策变量的赋值。
2.2 QUBO到Ising模型的转换