Python Transformers库【NLP处理库】全面讲解

边写代码零食不停口 盼盼麦香鸡味块卡乐比(Calbee)薯条三兄弟 独立小包好时kisses多口味巧克力糖老金磨方【黑金系列】黑芝麻丸

边写代码边贴面膜 事业美丽两不误 DR. YS 野森博士+【AOUFSE/澳芙雪特证】377专研美白淡斑面膜组合 优惠劵

别光顾写代码更要多喝茶水,提神有营养 六安瓜片茶叶茶香二级200g 2025年新茶雨前盒装自己喝

让AI成为我们的得力助手:《用Cursor玩转AI辅助编程——不写代码也能做软件开发》


以下是一份关于 transformers 库的全面讲解,包含基础知识、高级用法、案例代码及学习路径。内容经过组织,适合不同阶段的学习者。


一、基础知识

1. Transformers 库简介

  • 作用:提供预训练模型(如 BERT、GPT、RoBERTa)和工具,用于 NLP 任务(文本分类、翻译、生成等)。
  • 核心组件
    • Tokenizer:文本分词与编码
    • Model:神经网络模型架构
    • Pipeline:快速推理的封装接口

2. 安装与环境配置

pip install transformers torch datasets

3. 快速上手示例

from transformers import pipeline

# 使用情感分析流水线
classifier = pipeline("sentiment-analysis")
result = classifier("I love programming with Transformers!")
print(result)  # [{'label': 'POSITIVE', 'score': 0.9998}]

二、核心模块详解

1. Tokenizer(分词器)

from transformers import AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")

text = "Hello, world!"
encoded = tokenizer(text, 
                    padding=True, 
                    truncation=True, 
                    return_tensors="pt")  # 返回PyTorch张量

print(encoded)
# {'input_ids': tensor([[101, 7592, 1010, 2088, 999, 102]]), 
#  'attention_mask': tensor([[1, 1, 1, 1, 1, 1]])}

2. Model(模型加载)

from transformers import AutoModel

model = AutoModel.from_pretrained("bert-base-uncased")
outputs = model(**encoded)  # 前向传播
last_hidden_states = outputs.last_hidden_state

三、高级用法

1. 自定义模型训练(PyTorch示例)

from transformers import BertForSequenceClassification, Trainer, TrainingArguments
from datasets import load_dataset

# 加载数据集
dataset = load_dataset("imdb")
tokenized_datasets = dataset.map(
    lambda x: tokenizer(x["text"], padding=True, truncation=True),
    batched=True
)

# 定义模型
model = BertForSequenceClassification.from_pretrained("bert-base-uncased", num_labels=2)

# 训练参数配置
training_args = TrainingArguments(
    output_dir="./results",
    num_train_epochs=3,
    per_device_train_batch_size=8,
    evaluation_strategy="epoch"
)

# 训练器配置
trainer = Trainer(
    model=model,
    args=training_args,
    train_dataset=tokenized_datasets["train"],
    eval_dataset=tokenized_datasets["test"]
)

# 开始训练
trainer.train()

2. 模型保存与加载

model.save_pretrained("./my_model")
tokenizer.save_pretrained("./my_model")

# 加载自定义模型
new_model = AutoModel.from_pretrained("./my_model")

四、深入进阶

1. 注意力机制可视化

from transformers import BertModel, BertTokenizer
import torch

model = BertModel.from_pretrained("bert-base-uncased", output_attentions=True)
inputs = tokenizer("The cat sat on the mat", return_tensors="pt")
outputs = model(**inputs)

# 提取第0层的注意力权重
attention = outputs.attentions[0][0]
print(attention.shape)  # [num_heads, seq_len, seq_len]

2. 混合精度训练

from transformers import TrainingArguments

training_args = TrainingArguments(
    fp16=True,  # 启用混合精度
    ...
)

五、完整案例:命名实体识别(NER)

from transformers import pipeline

# 加载NER流水线
ner_pipeline = pipeline("ner", model="dslim/bert-base-NER")

text = "Apple was founded by Steve Jobs in Cupertino."
results = ner_pipeline(text)

# 结果可视化
for entity in results:
    print(f"{
     entity['word']} -> {
     entity['entity']} (confidence: {
     entity['score']:.2f})")

六、学习路径建议

  1. 入门阶段
  2. 中级阶段
    • 掌握自定义训练流程
    • 理解模型架构(Transformer、BERT原理)
  3. 高级阶段
    • 模型蒸馏与量化
    • 自定义模型架构开发
    • 大模型微调技巧

七、资源推荐

  1. 必读论文
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

老胖闲聊

创作不易,您的打赏是最大的鼓励

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值