class torch.nn.ConvTranspose2d函数

本文详细解析了逆卷积(转置卷积)的概念与PyTorch实现方式,包括参数设置如in_channels、out_channels、kernel_size等,以及如何计算输出尺寸。通过具体实例帮助理解上采样的过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

逆卷积?转置卷积?随便了

class torch.nn.ConvTranspose2d(in_channels, out_channels, kernel_size, stride=1, padding=0, output_padding=0, groups=1, bias=True)

  • in_channels(int) – 输入信号的通道数
  • out_channels(int) – 卷积产生的通道数
  • kerner_size(int or tuple) - 卷积核的大小
  • stride(int or tuple,optional) - 卷积步长
  • padding(int or tupleoptional) - 输入的每一条边补充0的层数
  • output_padding(int or tupleoptional) - 输出的每一条边补充0的层数
  • dilation(int or tupleoptional) – 卷积核元素之间的间距
  • groups(intoptional) – 从输入通道到输出通道的阻塞连接数
  • bias(booloptional) - 如果bias=True,添加偏置
  • shape: 
    输入: (N,C_in,H_in,W_in) 
    输出: (N,C_out,H_out,W_out) 
    $$H_{out}=(H_{in}-1)stride[0]-2padding[0]+kernel_size[0]+output_padding[0]$$

    $$W_{out}=(W_{in}-1)stride[1]-2padding[1]+kernel_size[1]+output_padding[1]$$

  • 对原图进行上采样,公式翻译如下:

  • 输出图像长或宽=(输入图像长或宽-1)*stride-2*padding+kernel_size+out_padding

  • å¨è¿éæå¥å¾çæè¿°

  •               图片来自https://blog.csdn.net/qq_27261889/article/details/86304061

  • 上图输出图像的长=(3-1)*1-2*0+4+0(out_padding默认为0) = 6

  • 框=7同理也可以用那个公式求出来

  • 原理记住老是忘,所以趁着理解了公式怎么算赶紧把它记下来,下次忘了直接看一眼怎么算的就好了

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值