Cross-Modality 3D Object Detection

本文是2021年WACV会议的一篇论文,研究跨模态3D对象检测,利用双目图像和点云数据进行融合。通过两个阶段的网络,首先从稀疏点云中生成3D候选框,然后融合2D和3D候选框的特征以增强表示。数据增强策略改善了点云稀疏目标的检测。实验表明该方法在KITTI数据集上表现出色。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文发表在2021WACV.
WACV是 IEEE Winter Conference on Applications of Computer Vision缩写,根据谷歌学术显示在 Computer Vision & Pattern Recognition 领域, WACV是排在CVPR\ICCV\ECCV\BMVC之后的较高质量的国际会议。
WACV 2021 为今年CV领域第一个较有影响力的学术会议,在1月5-9日举行,同样为网络虚拟会议,共录用论文406篇。相比于 WACV 2020 录用论文378,今年录用增长7.4%。

聚焦于图片和点云的融合,认为两者模态可以很好的互补,图片有更多的语义信息,而点云专用于遥感。本文是个两阶段的多模态融合网络,使用了双目图像和原始点云作为输入。

第一阶段主要目的是通过稀疏点云的特征融合产生3D候选框,第二阶段主要融合2D和3D候选框区域的密集特征,还提出了一种数据增强方法来增强点云密度,防止遥远的目标因过少的点而导致识别遗漏。数据集是KITTI。

一阶段就是产生框,二阶段融合roi区域来学习更鲁棒的表征并预测最后的置信度和框的微调。

图片和雷达的backbone网络,

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值