2025 年世界职业院校技能大赛总决赛评分要素


一、技能水平(权重 60%,60 分)

1.操作规范性(10分)
技能操作规范,符合行业标准和岗位要求
2.技能熟练度(15 分)
知识技术应用和软硬件等工具使用熟练,操作流畅,运用精准,任务进度控制和时间利用合理
3.任务难易度(15 分)
工作任务完整,突出关键技术,具有一定挑战性,需要较高技能操作水平和解决复杂问题的综合能力
4.技术先进性(15 分)
体现所属行业新标准、新技术、新场景应用,积极应用前沿技术数字化技术,技术选择恰当
5.现场讲解效果(5 分)
讲解内容逻辑清晰,重点突出,表达准确

二、职业素养(权重 10%,10 分)

1.职业道德与行为规范(4分)
诚信守法,尊重知识产权,遵守职业伦理,展现良好职业风貌
2.工匠精神(3分)
注重细节,精益求精,追求卓越,体现管理意识和质量意识
3.安全意识(3分)
严格遵守安全规范,具备劳动保护和风险防范意识

三、应用价值(权重 10%,10 分)

1.实用性(4分)
解决方案可直接应用于实践,有效解决生产、生活中的实际问题契合产业转型升级、区域经济社会发展、乡村振兴、促进高质量就业等国家战略需求
2.经济性(3分)
资源利用合理,体现高效益、高质量
3.可持续性(3分)
具有良好环保意识,绿色低碳,符合产业未来发展方向

四、团队合作(权重 10%,10 分)

1.团队精神(5分)
团队成员能够准确理解共同目标和任务,清楚自己的角色定位和职责,团队成员相互尊重、信任和支持,拥有良好的团队氛围
2.沟通协作(5 分)
团队成员在比赛中能够有效沟通、紧密协作,能够相互补台,共同应对突发情况

五、创新创意(权重 10%,10 分)

1.创新意识(4分)
体现原始创意、创新和团队成员创新精神、创新能力
2.创新成效(6分)
在要素整合、新技术应用、工艺流程改进、服务模式优化等方面具有原创性,侧重加工工艺创新、实用技术创新、产品(技术)数字化改良、应用性优化、民生类创意等

六、说明

1.评分原则为·突出能力导向、解决实际问题、体现创新因素、确保公平可比”
2.评分要素充分体现综合育人功能,突出教育教学改革创新,共5项评分指标,总分100分;
3.每项评分指标包括若干评分观测点,每个观测点有明确的分值;
4.评委依据观测点及说明,根据参赛团队的技能操作和现场讲解情况进行评分,避免主观印象影响。

### 2025世界职业院校技能大赛大数据项概述 #### 竞目的 该竞旨在通过实际操作考核参选手的数据处理、分析以及应用开发的能力,促进学生掌握现代信息技术和数据分析工具的应用技巧,培养学生的创新意识和技术实践能力[^1]。 #### 竞内容 竞内容主要包括但不限于以下几个方面: - 数据采集与预处理:涉及多种数据源的接入方法及其清洗转换过程。 - 数据存储与管理:考察对分布式文件系统及数据库系统的理解和运用。 - 数据挖掘与机器学习算法实现:测试基于给定场景下的模型构建能力和效果评估。 - 应用程序开发:要求完成特定业务逻辑的小型软件或模块的设计编码工作。 #### 竞时间和地点 根据现有资料推测,预计比将在2025内举办,具体日期尚未公布。考虑到前一的比安排情况,可以合理猜测此次事可能会在中国某个具备良好交通条件的城市举行,但确切位置需等待官方进一步通知[^2]。 #### 竞规则 为了确保公平公正公开的原则,在比中将严格遵循如下规定: - 所有队伍必须独立完成作品创作; - 使用指定的技术框架和编程语言进行项目实施; - 提交的作品应满足功能性和性能上的基本要求; - 需要准备详细的文档说明整个项目的构思流程和技术细节。 #### 技术规范与平台 本次大赛采用主流的大数据技术和开源组件作为支撑环境,可能包括Hadoop生态系统中的各个组成部分如Spark Streaming用于实时流计算;Elasticsearch负责全文检索服务;Kafka充当消息队列角色等。此外,还鼓励利用Python/R这类广泛应用于统计建模的语言来辅助解决问题[^3]。 #### 参与方式 对于有兴趣参加的学生来说,可以通过所在学校报名参与选拔活动,最终由校方推荐优秀团队代表本地区出战省级乃至国家级别的决阶段。值得注意的是,随着全国职业院校技能大赛升级为世界级别后,其竞争激烈程度必将有所增加,因此建议提前做好充分准备并积极训练以提高胜算几率[^4]。 ```python # Python代码示例:简单的数据读取与可视化展示 import pandas as pd import matplotlib.pyplot as plt data = {'Year': [2021, 2022, 2023], 'Participants': [1000, 1200, 1500]} df = pd.DataFrame(data) plt.plot(df['Year'], df['Participants']) plt.title('Number of Participants Over Years') plt.xlabel('Year') plt.ylabel('Participants Count') plt.show() ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值