时间:2024年 10月 20日
作者:小蒋聊技术
微信:wei_wei10
音频:喜马拉雅
引言
大家好,我是小蒋,欢迎来到“小蒋聊技术”频道!今天我们将一起探索如何从零开始,逐步了解大模型的基础与发展,特别是自然语言处理(NLP)领域的进步。从最初的编码方法到现代深度学习模型的崛起,我们将带你走进NLP的世界,理解其中的核心技术以及发展过程。
随着大数据和深度学习的快速发展,NLP技术在各种应用中逐渐发挥着越来越重要的作用。无论是智能客服、机器翻译,还是情感分析、搜索引擎优化,都离不开NLP的支持。而大模型,特别是基于Transformer架构的模型,正在推动NLP技术进入新的高峰。
今天的分享,我们将从语言的基本编码开始,逐步过渡到更复杂的模型结构,并且探讨这些技术的演化如何影响了现代NLP的技术进步。
第一部分:语言的编码与向量化
编码的起点:独热编码(One-Hot Encoding)
语言的编码是自然语言处理(NLP)中的第一步,也是最基础的一步。要让计算机理解我们所说的文字,首先需要将语言转化为计算机能理解的数字。最基本的编码方法就是独热编码。
什么是独热编码?
独热编码(One-Hot Encoding)是一种简单的词向量表示方法。假设我们的词汇表包含以下三个单词:“苹果”、“香蕉”和“橙子”,我们可以用如下的方式进行编码:
- 苹果:[1, 0, 0]
- 香蕉:[0, 1, 0]
- 橙子:[0, 0, 1]