
数据结构
文章平均质量分 94
小魏冬琅
有趣且繁忙的大学生活。
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
离散数学期末复习(20)
扩张(Expansion):指的是扩大量词的适用范围。对于全称量词或存在量词,扩展其定义域不改变命题的真值,只要原有的命题对于扩展后的定义域仍然成立。收缩(Shrinking):指的是缩小量词的适用范围。即,收缩定义域时,命题的真值可能不变,但必须满足某些条件。通过扩大量词的适用范围,命题的真值保持不变。例如,全称量词的扩张和存在量词的扩张。通过缩小量词的适用范围,命题的真值依然成立,只要原定义域中的命题为真。原创 2024-12-04 19:27:58 · 1289 阅读 · 0 评论 -
数据结构期末复习(19)
知识点解释时间复杂度带头结点链栈带头结点链栈通过头结点辅助管理栈操作,插入时需要更新指针O(1)栈的插入操作插入新结点时,需要调整指针,插入操作通常是 O(1) 复杂度O(1)知识点解释时间复杂度栈空判断栈为空时,栈顶指针top通常为 0,表示栈中没有元素O(1)知识点解释时间复杂度栈满判断当栈顶指针top达到栈的最大容量m0时,栈即为满栈O(1)知识点解释时间复杂度单链表删除操作删除已知结点的后继结点,通过修改指针直接删除,时间复杂度 O(1)O(1)原创 2024-12-04 08:17:35 · 603 阅读 · 0 评论 -
数据结构期末复习(18)
知识点解释时间复杂度双链表结构每个结点包含指向前一个结点和后一个结点的指针,适用于需要从两端访问的情况O(n)删除尾结点若无尾指针,需遍历整个链表找到尾结点,若有尾指针,删除操作为 O(1)O(n)(无尾指针)遍历链表时间遍历链表需要访问每一个结点,故时间复杂度为 O(n)O(n)知识点解释时间复杂度冒泡排序通过多次比较和交换相邻元素,将最大元素“冒泡”到末尾O(n^2)最坏情况比较次数当元素完全无序时,总比较次数为 n(n-1)/2O(n^2)知识点解释。原创 2024-12-04 07:39:48 · 1008 阅读 · 0 评论 -
数据结构期末复习(17)
正确答案问题答案解析线性表的顺序存储结构是否总是优于链式存储结构?错顺序存储适合随机访问,链式存储适合频繁插入删除操作。二叉排序树是否可以为空树?对二叉排序树的定义允许为空树。线性表中结点按前趋后继关系是否可以排成线性序列?对线性表的元素按顺序排列,每个元素都有前趋和后继。连通图的生成树是否唯一?错连通图可以有多种生成树,每个生成树包含所有顶点和 n−1 条边。栈和队列是否都是限制存取端的线性表?对栈和队列都限制了存取端,栈为LIFO,队列为FIFO。原创 2024-12-03 22:42:37 · 986 阅读 · 0 评论 -
数据结构期末复习(16)
正确答案问题答案解析树中元素之间是多对多的关系吗?错树是分层结构,每个结点与父结点之间是一对一关系。二路归并排序是否是稳定的?对二路归并排序在合并时,相等元素保持原有顺序,因此是稳定排序。所有内排序算法中的比较次数与初始元素排列是否无关?错比较次数与初始元素排列有关,如快速排序和冒泡排序的比较次数与输入序列有关。非空二叉树的先序序列的最后一个结点是否一定是叶子结点?对先序遍历的最后一个结点通常是最右的结点且为叶子结点。循环队列为空的标志是否只需队头和队尾指针相等即可?对。原创 2024-12-03 22:37:50 · 826 阅读 · 0 评论 -
数据结构期末复习(15)
问题答案解析简单选择排序是否是一种不稳定的排序方法对简单选择排序在元素相等时可能改变元素的相对顺序,因此是一个不稳定排序。数据的逻辑结构是否是指数据项之间的逻辑关系错数据的逻辑结构描述的是数据项之间的关系,但题目表述有些模糊。二路归并排序的时间复杂度是否与初始数据的顺序无关对归并排序的时间复杂度始终是 O(n log n),与数据的顺序无关。排序的稳定性是否是指排序算法中的比较次数保持不变且算法能终止错排序的稳定性是指相等元素的相对顺序保持不变,而不是与比较次数有关。原创 2024-12-03 22:19:34 · 994 阅读 · 0 评论 -
数据结构期末复习(14)
叶子结点数 mmm = 4总结点数 = 2m−1=2×4−1=72m - 1 = 2 \times 4 - 1 = 72m−1=2×4−1=7哈夫曼树的总结点数公式:2m−12m - 12m−1,其中 mmm 是叶子结点数。在哈夫曼树的构建过程中,每次合并两个结点都会产生一个新的非叶子结点,因此非叶子结点数为 m−1m - 1m−1,总结点数为 2m−12m - 12m−1。通过这个具体的例子,你可以看到,哈夫曼树的非叶子结点数始终比叶子结点数少 1。问题答案解释。原创 2024-12-03 22:04:19 · 840 阅读 · 0 评论 -
数据结构期末复习(13)
问题答案解释二叉树的第i层最多有多少个结点第i层最多有 2i−12^{i-1}2i−1 个结点。满二叉树的叶子和非终端结点数量叶子结点数为 n2\frac{n}{2}2n,非终端结点数为 n2−1\frac{n}{2} - 12n−1满二叉树的叶子结点和非终端结点的数量有固定的关系。二叉树中度为 0 的结点数与度为 2 的结点数在二叉树中,度为 0 的结点数等于度为 2 的结点数加 1。链表相对于顺序表的优点插入和删除操作方便链表的插入和删除操作无需移动其他元素,因此效率更高。原创 2024-12-03 21:59:37 · 588 阅读 · 0 评论 -
数据结构期末复习(12)
问题答案解释树形结构的表示方法双向链表,双链表树的链式存储可以通过双向链表或双链表来表示。图的存储结构邻接矩阵,邻接表邻接矩阵和邻接表是图的常见存储结构。图的遍历方法深度优先遍历(DFS),广度优先遍历(BFS)图的遍历方法包括深度优先遍历和广度优先遍历。树形结构:通过双向链表或双链表存储,节点通过指针连接。图的存储结构:有邻接矩阵和邻接表两种方式,适应不同的图结构和操作需求。图的遍历方法:深度优先遍历和广度优先遍历分别使用递归/栈和队列实现。问题答案解释。原创 2024-12-03 21:36:57 · 630 阅读 · 0 评论 -
数据结构期末复习(11)
数据结构存储方式例子线性表顺序存储、链式存储数组(顺序存储)、单链表(链式存储)单链表链式存储单链表单链表特点通过指针连接元素,内存不需要连续每个节点包含数据和指向下一个节点的指针问题答案解释顺序表访问时间复杂度O(1)O(1)O(1),随机存取顺序表可以通过下标直接访问任何元素,时间复杂度为常数时间。哈希表查找方法的平均查找长度与结点个数 nnn 无关,受装填因子影响哈希表的查找效率主要与装填因子有关,结点个数 nnn 对平均查找长度没有直接影响。原创 2024-12-03 21:12:13 · 658 阅读 · 0 评论 -
数据结构期末复习(10)
数据结构元素之间的关系例子关系类型线性结构一对一链表、栈、队列一对一树形结构一对多二叉树、文件树一对多图形结构多对多无向图、 有向图多对多查找(Search)查找是指在数据结构中寻找一个元素,确定该元素是否存在,以及其位置。如果数据结构支持高效的查找操作(例如哈希表、二叉搜索树),查找可以非常快速。操作含义举例插入向数据结构中添加一个新元素在链表中插入节点,向堆中插入元素查找寻找数据结构中的某个元素在二叉搜索树中查找元素,哈希表查找元素删除。原创 2024-12-03 20:04:43 · 706 阅读 · 0 评论 -
全面总结:常见数据结构时间复杂度比较表
以下是一个更加完整的表格,涵盖了链表、栈、队列、数组、哈希表、二叉搜索树、堆等常见数据结构的时间复杂度。表格按常见操作分类,便于比较和使用。这张表格可以作为快速查阅和理解常见数据结构的参考。对于每种数据结构的实现和应用,推荐结合具体问题场景深入实践和优化。原创 2024-12-03 19:49:49 · 2381 阅读 · 0 评论 -
深入理解常见数据结构及其时间复杂度 —— 基于C语言的实现与分析
为了便于理解和比较,以下表格总结了本文介绍的几种数据结构及其常见操作的时间复杂度。数据结构操作时间复杂度说明单链表插入头部O(1)在链表头部插入新节点,无需遍历插入尾部O(n)需要遍历整个链表找到尾节点删除头部O(1)只需修改头指针删除尾部O(n)需要遍历链表找到尾节点的前驱节点查找元素O(n)需要遍历整个链表遍历链表O(n)线性时间双链表插入头部O(1)只需修改头指针和新节点的prev指针插入尾部O(1)通过尾指针直接访问,无需遍历删除头部O(1)原创 2024-12-03 19:37:33 · 1466 阅读 · 0 评论 -
数据结构期末复习(9)
在题目中,选项A为O(n),但实际上在双链表中删除尾结点应为O(1)。因此,总的比较次数为: (n−1)+(n−2)+⋯+1=n(n−1)2(n-1) + (n-2) + \cdots + 1 = \frac{n(n-1)}{2}(n−1)+(n−2)+⋯+1=2n(n−1)。然而,按照题目提供的答案A(O(n)),可能假设链表不维护尾指针,因此需要遍历链表找到尾结点,时间复杂度为O(n)。按照题目提供的答案,建立一个有序单链表的时间复杂度为O(n),这可能假设了输入数据已经有序或者存在特定的优化方法。原创 2024-12-03 19:25:20 · 845 阅读 · 0 评论 -
数据结构期末复习(8)
完全二叉树是除了最后一层外,每一层的结点都达到最大个数,且最后一层的结点都尽可能地集中在左侧。原创 2024-12-02 19:37:13 · 1044 阅读 · 0 评论 -
数据结构期末复习(7)
A. 5B. 6C. 4D. 3A按照二叉树的定义,可以通过计算组合情况得出共有 5 种不同的二叉树结构。知识点讲解:二叉树是一种每个结点最多有两个子结点(左子结点和右子结点)的树形数据结构。具有 n 个结点的二叉树的不同结构数量可以通过卡塔兰数(Catalan Number)来计算。Cn=(2n)!n!(n+1)!}{n!(n+1)!}Cn=n!(n+1)!(2n)!其中,n 为二叉树的结点数。C3=(2×3)!3!(3+1)!=6!3!4!}{3!(3+1)!}{3!4!原创 2024-12-02 17:54:46 · 1028 阅读 · 0 评论 -
数据结构期末复习(6)
知识点描述相关操作二叉排序树结构每个节点有一个键值,左子树键值小于根,右子树键值大于根查找、插入、删除时间复杂度分析根据树的高度,操作的时间复杂度不同最佳和最坏情况的时间复杂度评估平衡二叉排序树通过旋转等操作保持树的平衡,确保高度为 O(log₂n)AVL 树、红黑树操作后的节点插入删除后重新插入节点的位置取决于当前树的结构,不定为叶子节点插入操作的灵活性知识点描述相关操作存储结构分类顺序存储与链式存储的区别数组 vs 链表链式存储的特点。原创 2024-12-02 16:58:09 · 655 阅读 · 0 评论 -
数据结构期末复习(5)
知识点说明完全二叉树所有层都是满的,最后一层从左到右排列左孩子编号2 * i右孩子编号2 * i + 1知识点说明无向图没有方向的边的图,每条边连接两个顶点完全图每两个顶点之间都有边,边数为n(n-1)/2组合数C(n, 2)表示从n个元素中选择2个的组合数知识点说明单链表包含数据域和指针域的线性链式结构数据域存储数据元素指针域存储下一个结点的地址知识点说明单链表每个结点包含数据和指向下一个结点的指针查找操作从头开始逐个遍历,最坏时间复杂度为O(n)平均查找次数。原创 2024-12-02 16:16:08 · 1147 阅读 · 0 评论 -
数据结构期末复习(4)
知识点说明连通图任意两点之间存在路径最小边数连通n个顶点至少需要n-1条边树没有环的连通无向图知识点说明二叉排序树查找左子树小于根,右子树大于根,O(log₂ n)折半查找适用于有序数组,O(log₂ n)哈希查找利用哈希函数,不进行比较知识点说明单链表线性表的链式存储结构插入有序单链表需要遍历链表,找到合适位置,时间复杂度为O(n)总时间复杂度插入n个元素,总时间复杂度为O(n²)知识点说明连通图任意两点之间存在路径最小边数连通n个顶点至少需要n-1条边。原创 2024-12-02 15:30:36 · 1319 阅读 · 0 评论 -
数据结构期末复习(3)
排序方法说明快速排序基于分治法,每次选基准元素划分左右子序列选择排序每次选最小值,放到合适位置归并排序不断二分然后合并希尔排序基于插入排序,缩小增量进行排序知识点说明顺序存储结构数据连续存储,逻辑地址与物理地址相同链式存储结构数据不连续存储,通过指针连接典型数据结构数组(顺序存储)、链表(链式存储)知识点说明双链表结构每个节点有前驱和后继指针删除尾结点无尾指针需遍历链表,时间复杂度为O(n)尾结点指针持有尾指针时,删除时间复杂度为O(1)知识点说明堆。原创 2024-12-02 12:45:00 · 947 阅读 · 0 评论 -
数据结构期末复习(2)
知识点说明比较排序的下界n个元素,至少比较n - 1次排序算法常见的有插入排序、冒泡排序、选择排序等知识点说明前序遍历根 -> 左子树 -> 右子树中序遍历左子树 -> 根 -> 右子树后序遍历左子树 -> 右子树 -> 根知识点说明链式存储结构节点通过指针连接,节点位置不需连续存储单链表每个节点包含数据域和指向下一个节点的指针域双链表每个节点包含数据域、前驱指针和后继指针指针域用于连接链表中的下一个节点知识点说明二分查找适用于有序数据集,每次将范围减半。原创 2024-12-02 12:24:59 · 1154 阅读 · 0 评论 -
数据结构期末复习(1)
知识点说明栈一种后进先出(LIFO)的线性数据结构栈顶指针top指向栈顶元素的位置栈空条件栈满条件排序算法平均时间复杂度空间复杂度比较次数情况快速排序O(n log n)O(log n)平均比较次数最少选择排序O(n²)O(1)比较次数较多插入排序O(n²)O(1)平均比较次数较多归并排序O(n log n)O(n)平均情况比较次数较快知识点说明二叉排序树(BST)每个节点的左子树小于该节点,右子树大于该节点查找路径从根节点到目标节点的一条路径。原创 2024-12-02 11:45:51 · 1097 阅读 · 0 评论 -
数据结构与算法之时间复杂度和空间复杂度
时间复杂度和空间复杂度是衡量算法效率和资源使用的重要指标。理解这两者对于分析和优化算法非常重要,尤其在数据结构的学习和应用中,时间和空间的效率是首要考虑的问题。原创 2024-11-11 18:07:25 · 802 阅读 · 0 评论 -
数据结构与算法:数据结构的前沿研究(最终章)
本章介绍了数据结构的前沿研究,包括可持久化数据结构、随机化数据结构、内存与存储优化的数据结构,以及新兴数据结构与未来趋势。通过理解这些新兴的数据结构及其应用,我们可以更好地应对现代计算和大规模数据处理中的复杂挑战。原创 2024-10-16 07:26:45 · 1275 阅读 · 0 评论 -
数据结构与算法:并行与并发数据结构
本章介绍了并行与并发数据结构的设计与应用,包括并行链表、并发栈与队列、无锁数据结构等内容。通过理解这些并发数据结构的实现原理,我们可以在多线程和多核系统中构建高效、安全的数据处理系统。并行与并发数据结构在高性能计算、实时系统和服务器设计中具有重要的应用价值。下一章我们将探讨数据结构的前沿研究,包括可持久化数据结构、随机化数据结构及其在大规模数据处理中的应用。原创 2024-10-16 07:24:11 · 872 阅读 · 0 评论 -
数据结构与算法:分布式数据结构
本章介绍了分布式数据结构的基本概念和应用,包括分布式哈希表、分布式图算法、数据流算法及其优化技术。分布式数据结构使得我们可以在多个节点上高效存储和处理数据,提升系统的可扩展性和容错能力。通过这些技术,我们可以设计出具有高性能和高可靠性的分布式系统。在下一章中,我们将探讨并行与并发数据结构,重点讨论如何在多线程环境中设计高效的数据结构,并提高系统的并行计算能力。原创 2024-10-16 07:22:30 · 1129 阅读 · 0 评论 -
数据结构与算法:并查集与线段树的高级应用
本章详细介绍了并查集、线段树和树状数组这三种重要的数据结构,通过结合路径压缩和按秩合并的并查集,可以在接近常数时间内处理动态连通性问题;线段树和树状数组则通过分段和二进制索引,分别实现了高效的区间查询与更新操作。理解并掌握这些数据结构及其应用,可以帮助我们在处理复杂数据和查询问题时实现高效的解决方案。在下一章中,我们将探讨分布式数据结构,包括分布式哈希表、分布式图算法及数据流算法等内容,以应对大规模数据的处理与计算挑战。原创 2024-10-16 07:19:34 · 825 阅读 · 0 评论 -
数据结构与算法:高级数据结构与实际应用
本章介绍了跳表、Trie树、B树与 B+树等高级数据结构,以及它们在实际系统中的应用。这些数据结构在提高查找效率、优化存储和加速特定任务方面具有不可替代的作用。通过深入理解这些结构及其特性,我们能够选择最合适的数据结构来应对复杂的实际问题。在下一章中,我们将深入讨论并查集与线段树的高级应用,以及它们在图论和范围查询中的重要作用。原创 2024-10-16 07:16:00 · 1348 阅读 · 0 评论 -
数据结构与算法:搜索与优化技术
本章探讨了搜索与优化技术,介绍了回溯、分支限界、经典搜索算法以及复杂搜索问题的优化方法。通过使用启发式搜索、剪枝技术和增量更新等优化策略,我们可以有效地解决从组合优化到路径规划等多种复杂问题。理解和应用这些搜索与优化技术,是构建智能系统和高效算法的重要基础。在下一章中,我们将讨论高级数据结构与实际应用,包括跳表、Trie 树、B 树等数据结构,以及它们在系统设计中的具体应用。原创 2024-10-15 07:29:34 · 1006 阅读 · 0 评论 -
数据结构与算法:动态规划的深度探讨
本章深入讨论了动态规划的基本思想、经典问题、在图中的应用及其高级技术。动态规划通过将问题分解为子问题,并通过记忆化存储减少计算次数,从而有效地解决了许多复杂的优化问题。通过理解最优子结构、重叠子问题,以及不同实现策略,我们可以更加高效地解决实际问题。在下一章中,我们将探讨搜索与优化技术,包括回溯与分支限界等内容,进一步提高问题求解的效率。原创 2024-10-15 07:27:24 · 792 阅读 · 0 评论 -
数据结构与算法:贪心算法与应用场景
本章深入介绍了贪心算法的基本原理及其在各种经典问题中的应用。通过表格比较和代码示例,我们了解了贪心算法在活动选择、最小生成树、最短路径等场景中的广泛应用。同时,我们讨论了贪心算法的局限性及其与其他算法的结合方式。在下一章中,我们将深入探讨动态规划的核心思想及其在复杂问题中的应用。原创 2024-10-15 07:24:39 · 1595 阅读 · 0 评论 -
数据结构与算法:字符串匹配算法的深入探讨
本章介绍了字符串匹配的基本概念和几种经典算法,包括朴素匹配、KMP、Boyer-Moore 以及 Rabin-Karp 算法,并探讨了后缀数组等高级字符串处理技术。通过掌握这些算法,我们可以更高效地解决文本查找和字符串匹配问题,这对于自然语言处理、基因分析以及网络安全等领域具有重要的应用价值。在下一章中,我们将探讨贪心算法及其在实际问题中的应用,包括如何通过贪心策略找到最优解,以及常见的贪心算法实例。原创 2024-10-15 07:21:49 · 1403 阅读 · 0 评论 -
数据结构与算法:图的高级算法
本章深入介绍了图的高级算法,包括最短路径、最小生成树、网络流等问题的经典解决方案及其实现。通过理解这些算法,我们可以应对复杂的网络优化、路径规划等实际问题。图的高级算法不仅是解决理论问题的重要工具,也是解决许多实际场景中的优化问题的关键。下一章将探讨字符串匹配算法,包括基础字符串匹配、KMP 算法、Boyer-Moore 算法及其在实际系统中的应用。原创 2024-10-15 07:18:16 · 1115 阅读 · 0 评论 -
数据结构与算法:图的理论与应用
本章介绍了图的基础理论和应用,包括图的表示方法、遍历算法、拓扑排序以及图的高级特性。通过掌握这些图论的基本概念和算法,我们可以解决实际中的许。原创 2024-10-14 16:24:39 · 865 阅读 · 0 评论 -
数据结构与算法:堆与优先队列的深入剖析
堆是一棵完全二叉树,其中每个节点的值都不小于(或不大于)其子节点的值。这种特性使得堆非常适合实现优先队列,堆中的最大(或最小)元素总是位于树的根部。二叉堆与其在优先队列中的应用:二叉堆是堆的一种常见实现,通常用于实现优先队列。二叉堆可以分为最大堆和最小堆两种类型。在最大堆中,每个父节点的值大于或等于其子节点的值;在最小堆中,父节点的值小于或等于其子节点的值。代码示例:最小堆的实现*a = *b;*b = temp;printf("堆已满\n");return;size++;原创 2024-10-14 16:19:44 · 1425 阅读 · 0 评论 -
数据结构与算法:树的结构与应用
本章详细讨论了树的结构和应用,包括二叉树、平衡树、多路树、前缀树等不同类型的树结构及其应用实例。树是一种非常灵活且高效的数据结构,适用于处理具有层次关系的数据。本章还探讨了如何优化树结构以提高性能,包括平衡操作、缓存友好性设计和并行化方法。在下一章中,我们将探讨堆与优先队列的深入剖析,包括堆的各种实现方式、堆排序算法及其在实际系统中的应用。原创 2024-10-14 16:12:00 · 1234 阅读 · 0 评论 -
数据结构与算法:哈希表的深度研究
本章深入探讨了哈希表的数据结构和其在实际应用中的广泛应用。通过理解哈希函数的构建原理、哈希冲突的解决方案以及性能优化方法,我们可以设计出高效、可靠的哈希表。哈希表在数据库、缓存系统、分布式系统等多个领域都有重要的应用。在下一章中,我们将探讨树的结构与应用,包括二叉树、平衡树、多路树等高级树结构,以及它们在文件系统、索引和网络中的具体应用。原创 2024-10-14 16:03:52 · 870 阅读 · 0 评论 -
数据结构与算法:递归、分治与回溯
本章介绍了递归、分治与回溯三种重要的算法范式,讨论了它们的概念、实现方式以及在实际问题中的应用。递归提供了简洁的解决方案,适用于具有自相似结构的问题;分治法通过将问题分解为多个子问题来简化计算;回溯则在解决组合和搜索问题时具有很高的灵活性。通过理解这些算法范式,我们可以更有效地解决复杂问题,提高算法的效率。下一章将介绍哈希表的深度研究,包括哈希函数的设计、冲突解决方法以及哈希表在实际系统中的应用。原创 2024-10-14 15:58:16 · 1173 阅读 · 0 评论 -
数据结构与算法:栈与队列的高级应用
本章介绍了栈和队列的高级应用,包括它们在递归、表达式求值、任务调度、图遍历等方面的重要作用。栈的LIFO特性使得它在函数调用管理、表达式求值等场景中不可替代,而队列的FIFO特性则使其在任务调度和广度优先搜索中占据核心地位。理解栈与队列的高级用法,能够帮助我们设计出更高效、灵活的数据处理系统。在下一章中,我们将讨论递归、分治与回溯等算法范式,它们与栈有着密不可分的关系,并且在解决复杂问题时表现出了卓越的能力。原创 2024-10-13 13:59:01 · 1133 阅读 · 1 评论 -
数据结构与算法:数组与链表的扩展与应用
本章讨论了数组和链表的内存布局、动态管理及其扩展应用。通过代码示例,我们可以更好地理解这些数据结构的特性以及它们在不同场景中的适用性。数组在访问速度方面具有明显优势,而链表则在动态操作中表现优异。对于更复杂的需求,可以将两者结合使用,以实现高效的数据管理。下一章我们将探讨栈与队列的高级应用,包括其在递归、表达式求值和调度中的具体应用。原创 2024-10-13 13:48:44 · 738 阅读 · 0 评论