在线作图丨2分钟绘制微生物组的曼哈顿图(Taxonomy Manhattan Plot)

本文介绍了如何在不使用R语言的情况下,通过云图图网站快速制作微生物组的曼哈顿图。详细步骤包括上传数据文件、设置参数、下载结果以及作图后处理。云图图提供免费的在线数据分析服务,适用于微生物组学的差异分析。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Q1:什么是曼哈顿图(Manhattan Plot)
曼哈顿图是一种散点图,通常用于显示具有大量非零的波动数据点,以及更高幅度值的分布,常常用在全基因组关联研究 (GWAS) 中。它的图像因与曼哈顿的天际线相似性而得名——摩天大楼的轮廓耸立在较低层的“建筑物”和海平面之上。
在这里插入图片描述
Q2:曼哈顿图在微生物组中如何应用?
曼哈顿图的本质是散点图,散点在y轴的高度突出,其属性异于其他低点。在微生物组成谱的分析中,曼哈顿图在展示差异OTUs/ASVs的上下调情况、差异OTUs/ASVs归属情况中有较好的效果。
一般来说,在微生物组成谱的曼哈顿图包括:
(1) X轴:按OTUs或ASVs不同分类学水平的字母顺序排列;
(2) Y轴:-log10(Pvalue);由于Pvalue的范围是从0-1,并且我们希望它越小越好,但直接展示时位于最下方,不符合直觉认知;因此,对Pvalue进行-log10转换,此时高显著性(Pvalue趋近零)的值被高位显示,独立于其他值。(3) 水平线:一般表示显著性水平阈值,方便直观了解每个点的显著性水平;(4) 散点色彩:一般用于展示分类学水平,不同颜色的点代表不同的微生物种类;
(5) 散点形状:一般用于展示富集情况,上调为enriched(正实心三角),下调为depleted(倒空心三角),没有显著差异变化为nosig(实心圆点);
(6) 散点大小

### 微生物群落装分析中的R包和教程 在微生物生态学研究领域,使用R语言进行微生物群落装的研究是一种常见的实践方式。以下是几个常用的工具及其功能描述: #### 1. **Phyloseq** `phyloseq` 是一种强大的R包,用于处理和分析高通量测序数据集中的微生物群落结构[^1]。它支持多种输入格式,并能够轻松集成其他统计测试和可视化方法。 ```r library(phyloseq) # 导入OTU表、样本元数据以及分类信息 otu_table <- otu_table(read.csv("path/to/your_otu_table.csv", row.names=1), taxa_are_rows=TRUE) sample_data <- sample_data(read.csv("path/to/sample_metadata.csv")) taxa_data <- tax_table(read.csv("path/to/taxonomy.csv")) # 创建 phyloseq 对象 ps_obj <- merge_phyloseq( otu_table, sample_data, taxa_data ) # 可视化 alpha 多样性和 beta 多样性 plot_richness(ps_obj, x="SampleType", measures=c("Observed","Chao1"), color="SampleType") ord_plot <- ordinate(ps_obj, method="PCoA", distance="bray") plot_ordination(ps_obj, ord_plot, type="samples", color="SampleType") ``` #### 2. **SourceTracker** `SourceTracker` 提供了一种贝叶斯框架来估计不同环境中观察到的微生物分的比例[^2]。虽然其主要实现是在MATLAB中完成的,但也有基于R的接口可以调用该算法的功能。 #### 3. **metacoder** `metacoder` 是另一个专注于简化复杂微生物数据分析流程的软件包[^3]。它的优势在于提供了一个统一的数据模型和一系列交互式的绘图函数。 ```r install.packages("metacoder") library(metacoder) # 加载并过滤 OTU 表格 data(primate_gut_microbiome) filtered_data <- filter_taxa(primate_gut_microbiome, sum >= 50 & prevalence > .1) # 绘制堆叠条形图展示物种分布情况 gg_bar(filtered_data, fill = "Taxon") + theme_minimal() + labs(title = "Primates Gut Microbiota Composition", y = "Relative Abundance (%)", x = "") ``` #### 4. **DECIPHER** 对于更深入的序列解析需求,`DECIPHER` 能够帮助识别新的基因特征或者构建进化树等高级操作[^4]。 --- ### 数据预处理与质量控制的重要性 无论采用哪种具体技术手段,在正式进入社区装配建模之前都需要做好充分的数据清洗工作,比如去除低丰度读取项、标准化总计数等等措施都是不可或缺的部分[^5]。 --- ###
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值