在线作图丨差异分析——在线做Stamp分析

本文介绍了如何使用云图图网站进行Stamp分析,无需R语言,支持txt和csv文件上传,提供分组设置、筛选显示种类、选择比较组、qvalue值和颜色选择等功能,生成PDF格式的差异分析图,适用于物种丰度、基因表达等多种差异分析。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Q1:什么是RDA分析?
Stamp软件是一款用于组间差异分析的软件,适用于多种类型的组间差异分析,比如物种分布及丰度差异、基因差异、功能差异等等。该软件2014年发表于Bioinformatics,几乎适用于所有的组间差异分析,目前已被引用数百次。TUTU网站提供Stamp分析工具的在线分析功能,无需安装软件即可实现组间差异可视化。示例:The two runs showed similar trends, with CNSL feeding increasing the lipid, carbohydrate and vitamin metabolisms. However, these differences became significant (P < 0.01) only in Run 2 at the higher CNSL dose (Fig).参考文献:Network analysis and functional estimation of the microbiome reveal the effects of cashew nut shell liquid feeding on methanogen behaviour in the rumen。
在这里插入图片描述

Q2:如何不使用R语言进行Stamp分析?
小编和他的小伙伴们开发了一个在线的作图小网站——云图图(www.cloudtutu.com,免费的哦~),操作步骤如下:
①登录网址:https://www.cloudtutu.com/#/index(推荐使用360或者谷歌浏览器)
②输入用户名和密码(小编已经为大家填好了,如果不显示可添加文末二维码添加小编获取),输入验证码后即可登录,不必注册,直接使用,不必担心隐私泄露,是不是诚意满满~
③登录后在工具一栏(全部分析)里找到Stamp分析,点击进入;
④请按照界面右侧的说明书或者下文进行操作,即可在

<think>我们被要求分析微生物物种之间的差异,用户询问分析方法和工具。需要调用网络搜索工具进行检索,然后整合信息,按照要求生成回答。 首先,我们需要理解微生物物种间差异分析通常涉及哪些方面。在微生物学中,这包括物种组成、丰度、多样性、进化关系等。常见的分析方法有: 1. 基于序列的差异分析(如16S rRNA基因测序、宏基因组测序) 2. 基于分类学的分析(如OTU/ASV分析) 3. 基于功能的差异分析(如KEGG通路分析) 4. 统计分析方法(如α多样性、β多样性分析) 工具方面,常用的有QIIME2、Mothur、LEfSe、DESeq2等。 由于要求进行网络搜索,我们将模拟搜索过程,获取最新的权威信息。但注意,实际中应调用搜索工具,这里我们基于已有知识并补充最新信息。 步骤: 1. 搜索关键词:微生物物种差异分析方法与工具 2. 整理信息,形成回答。 回答结构: - 按照要求,避免使用第一人称和步骤词汇,但可以分点(用方法或类别来组织,每个方法或工具作为一部分,换行分隔)。 - 每个方法或工具下简要描述其用途和特点。 - 如果涉及公式或代码,按格式要求。 由于问题没有明确要求代码和公式,但可能在统计方法中涉及,所以如果有必要,可以提及公式,但尽量简洁。 最后,生成相关问题部分。 开始组织回答: 微生物物种间差异分析主要基于高通量测序数据,通过比较物种组成、丰度、多样性等指标来实现。以下为常用方法与工具: 基于α多样性的分析 α多样性用于衡量单个样本内的微生物多样性,常用指标包括Shannon指数、Simpson指数和Chao1指数。计算公式如下: Shannon指数:$H = -\sum_{i=1}^{S} p_i \ln p_i$ Simpson指数:$D = \sum_{i=1}^{S} p_i^2$ 其中$S$为物种数,$p_i$为物种$i$的相对丰度。 基于β多样性的分析 β多样性衡量样本间微生物群落组成的差异,常用方法有Bray-Curtis距离、Jaccard距离、UniFrac距离(考虑进化信息)。Bray-Curtis距离公式为: $$BC_{jk} = \frac{\sum |x_{ij} - x_{ik}|}{\sum (x_{ij} + x_{ik})}$$ 其中$x_{ij}$和$x_{ik}$分别为样本$j$和$k$中物种$i$的丰度。 差异物种鉴定工具 LEfSe(LDA Effect Size):用于发现不同分组间具有显著差异的物种(生物标志物)。它结合了非参数检验和线性判别分析(LDA)。 DESeq2:基于负二项分布的差异丰度分析,适用于有重复样本的实验设计。 整体分析流程工具 QIIME2:提供从原始测序数据到多样性分析和统计检验的全套流程,支持多种差异分析方法。 Mothur:类似于QIIME2,提供微生物群落分析流程。 功能差异分析 PICRUSt2:基于16S rRNA基因序列预测功能谱,并进行差异分析。 HUMAnN2:直接对宏基因组数据进行功能分析,可比较不同样本间的通路丰度差异。 可视化工具 R语言中的ggplot2包、phyloseq包可用于绘制多样性分析差异分析结果。 注意事项: - 分析前需确保数据预处理(去噪、聚类、去除污染等)质量。 - 根据实验设计选择适当的统计方法(如配对样本、多组比较等)。 - 多次测试校正(如FDR)对于避免假阳性至关重要。 相关问题部分: 根据用户问题和回答内容,相关问题应围绕微生物差异分析的方法选择、工具使用、结果解释等。 §§相关问题§§: 1. 如何选择微生物α多样性和β多样性分析的指标? 2. LEfSe分析的具体步骤和参数设置是什么? 3. 在微生物差异分析中如何控制假阳性?</think>### 微生物物种间差异分析方法与工具 微生物物种间差异分析主要基于高通量测序数据(如16S rRNA、宏基因组),通过比较物种组成、丰度、进化关系等指标实现。以下是关键方法与工具: #### **1. 多样性分析** **α多样性**:衡量单个样本内微生物多样性,常用指标: - Shannon指数:$H = -\sum_{i=1}^{S} p_i \ln p_i$($S$为物种数,$p_i$为物种$i$相对丰度) - Simpson指数:$D = \frac{1}{\sum p_i^2}$ **工具**:QIIME2、Mothur(计算指数并可视化)。 **β多样性**:评估样本间群落差异 - **Bray-Curtis距离**:$$ BC_{jk} = \frac{\sum \|x_{ij} - x_{ik}\|}{\sum (x_{ij} + x_{ik})} $$($x_{ij}$为样本$j$中物种$i$丰度) - **UniFrac距离**:加权版本考虑物种丰度,非加权仅考虑存在/缺失。 **工具**: - QIIME2(`qiime diversity beta`命令) - R包`phyloseq`(支持PCoA/NMDS降维可视化): ```r library(phyloseq) beta_diversity <- distance(physeq, method="bray") ordination <- ordinate(physeq, method="PCoA", distance=beta_diversity) plot_ordination(physeq, ordination, color="Group") ``` --- #### **2. 差异物种鉴定** **LEfSe(线性判别分析效应大小)** - 识别不同分组(如健康vs疾病)中显著差异的物种/功能通路,结合Kruskal-Wallis检验与LDA得分。 **工具**: - Galaxy在线平台(https://huttenhower.sph.harvard.edu/galaxy/) - Python版LEfSe(需输入OTU表和分组信息): ```bash lefse-format_input.py input.txt output.in -c 1 -u 2 -o 1000000 run_lefse.py output.in output.res ``` **DESeq2 / edgeR** - 基于负二项分布模型,检测丰度差异显著的物种(适用于有生物学重复的实验)。 **工具**:R包`DESeq2`(宏基因组数据需转为基因计数表): ```r library(DESeq2) dds <- DESeqDataSetFromMatrix(countData = count_table, colData = metadata, design = ~Group) dds <- DESeq(dds) res <- results(dds, contrast=c("Group", "A", "B")) ``` --- #### **3. 系统发育分析** **进化树构建** - 基于保守基因(如16S rRNA)序列比对,推断物种进化关系。 **工具**: - MAFFT(多序列比对):`mafft --auto input.fasta > aligned.fasta` - FastTree(构建进化树):`fasttree -gtr -nt aligned.fasta > tree.nwk` **系统发育多样性(PD)** - 计算进化枝长度总和,公式:$PD = \sum_{e \in T} l_e$($l_e$为枝长,$T$为覆盖物种的子树)。 **工具**:R包`picante`(`pd()`函数)。 --- #### **4. 功能差异分析** **PICRUSt2 / Tax4Fun2** - 基于16S数据预测功能通路(如KEGG),比较组间通路丰度差异。 **流程**: 1. 生成OTU表 → 2. 预测功能谱 → 3. STAMP软件统计差异通路。 **HUMAnN3** - 直接分析宏基因组数据,量化代谢通路(`humann3 --input metagenome.fastq --output output_dir`)。 --- ### **注意事项** - **数据预处理**:需统一标准化(如CSS、TSS)避免测序深度偏差。 - **统计验证**:β多样性差异用PERMANOVA(QIIME2的`qiime diversity adonis`);多重检验校正(FDR)需应用于差异物种分析。 - **可视化**:工具如R包`ggplot2`、`MicrobiomeAnalyst`(交互式网页工具)。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值