在线分析丨相关性分析——RDA/CCA分析

本文介绍了RDA(冗余分析)和CCA(典型相关分析)的概念及其区别,指出RDA是线性模型,而CCA基于单峰模型。当Lengths of gradient的第一轴大于4.0时,推荐使用CCA;小于3.0时,RDA更优。此外,文章推荐了一个名为云图图的在线作图平台,详细阐述了如何上传数据、设置参数和下载RDA/CCA图的步骤。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

​Q1:什么是RDA分析?
RDA分析(Redundancy analysis),即冗余分析,对比主成分分析可以发现,其实冗余分析就是约束化的主成分分析。冗余分析(redundancy analysis, RDA)或者典范对应分析(canonical correspondence analysis, CCA)是基于对应分析(correspondence analysis, CA)发展而来的一种排序方法,将对应分析与多元回归分析相结合,每一步计算均与环境因子进行回归,又称多元直接梯度分析。
在这里插入图片描述

Q2:什么是CCA分析
典型相关分析(Canonical Correlation Analysis)是研究两组变量之间相关关系的一种多元统计方法,它能够揭示出两组变量之间的内在联系。
优点:CCA是一种基于单峰模型的排序方法,样方排序与对象排序对应分析,而且在排序过程中结合多个环境因子,因此可以把样方、对象与环境因子的排序结果表示在同一排序图上。缺点:存在“弓形效应”。克服弓形效应可以采用除趋势典范对应分析(detrended canonical correspondence, DCCA)。
在这里插入图片描述

Q3:如何选择RDA和CCA?
RDA或CCA的选择问题:RDA是基于线性模型,C

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值