R语言绘制ROC曲线图

本文介绍了在R语言中使用pROC和ROCR包绘制ROC曲线的两种方法,包括下载包、计算AUC及曲线美化等步骤。适用于医学诊断、生物信息学等领域,帮助评估生物标记物和统计分析。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

受试者工作特征曲线(ROC曲线),最初作为一种分析方法在二战时用于评价雷达性能(鉴别敌方,友方以及噪音),目前广泛应用于医学诊断、生物信息学、数据挖掘和机器学习等研究中。
ROC曲线可用于评价生物标记物(biomarker)的表现以及比较不同打分方法(scoring methods)。因此,ROC曲线是非常重要和常见的统计分析方法,下面我们就用两种方法绘制ROC曲线图吧~

part 1:pROC绘制ROC曲线

1.下载pROC包和ggplot2包

BiocManager::install("pROC")
BiocManager::install("ggplot2")

2.调用pROC包,调用ggplot2包以利用ggroc函数

library(pROC)
library(ggplot2)

3.建立曲线

data(aSAH)
rocobj1<-roc(aSAH$outcome,aSAH$s100b)
rocobj2<-roc(aSAH$outcome,aSAH$wfns)
rocobj3<-roc(aSAH$outcome,aSAH$ndka)

4.计算full AUC

auc(rocobj1)
auc(rocobj2)
auc(rocobj3)

5.绘制曲线

plot(rocobj1)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值