实现切比雪夫曲线拟合与滤波器设计

本文还有配套的精品资源,点击获取 menu-r.4af5f7ec.gif

简介:切比雪夫曲线拟合技术广泛应用于信号处理和滤波理论,基于切比雪夫多项式以优化滤波器的频率响应特性。该技术包括两种切比雪夫滤波器:I型在通带内具有等波纹频率响应,II型在阻带内具有等波纹频率响应。remez算法是设计此类滤波器的关键,通过迭代寻找最佳系数以逼近理想响应。本文档包含了实现remez算法的Pascal语言代码和相关资料,有助于理解和应用该技术。
切比雪夫曲线拟合的实现

1. 切比雪夫曲线拟合概述

在现代信号处理和控制系统设计中,曲线拟合是基础且关键的一环。特别是在滤波器设计中,拟合的精确性往往决定了系统的性能表现。切比雪夫曲线拟合,作为优化技术的一种,尤其以其在最小化振荡方面的卓越性能而著称。

切比雪夫曲线拟合通常涉及切比雪夫多项式,这些多项式可以有效地逼近给定函数,并且在预定的频率范围内控制误差振荡。它在工程应用中,如电子滤波器设计中,提供了一种设计滤波器的高效途径,从而确保信号在特定频段内的传输特性达到预期要求。

本章节将深入探讨切比雪夫曲线拟合的基础理论,并概述其在滤波器设计中的应用前景。通过介绍相关数学原理、特性分析和实际应用案例,让读者能够快速掌握切比雪夫曲线拟合的核心概念及其在工程实践中的重要价值。

2. 切比雪夫多项式在滤波器设计中的应用

2.1 切比雪夫多项式基础理论

2.1.1 多项式的定义及其数学特性

多项式是数学中一个基本的概念,由变量的整数次幂和系数构成。对于变量 (x),一个n阶多项式可以表示为:

[ P(x) = a_nx^n + a_{n-1}x^{n-1} + … + a_1x + a_0 ]

其中 (a_n, a_{n-1}, …, a_0) 是系数,且 (a_n \neq 0)。

在滤波器设计中,特定类型的多项式能够提供理想的频率选择性。切比雪夫多项式是这些多项式中的一类,它包括两个类型:第一类切比雪夫多项式 (T_n(x)) 和第二类切比雪夫多项式 (U_n(x))。它们都具有递归定义,其中第一类切比雪夫多项式通过递推公式定义为:

[ T_{n+1}(x) = 2xT_n(x) - T_{n-1}(x) ]

并且 (T_0(x) = 1) 和 (T_1(x) = x)。

第一类切比雪夫多项式是关于 (x) 的 (n) 次多项式,且其根全部位于 ([-1, 1]) 区间内。第二类切比雪夫多项式可以类似地递推定义,且主要应用于带通和带阻滤波器设计。

2.1.2 切比雪夫多项式与最小化振荡

切比雪夫多项式的一大特点是它能在指定的频率范围内产生等波纹(等振幅)的通带或阻带响应。这种特性使其成为最佳通带或阻带滤波器设计的理想选择。当设计滤波器时,设计师面临的关键挑战之一是找到幅度响应最小化振荡的方法,尤其是在过渡带宽中。

利用切比雪夫多项式,可以在通带(或阻带)内实现最大幅度误差最小化。这是因为切比雪夫滤波器设计方法利用了数学上的多项式逼近理论,它允许在通带或阻带的最大误差之间作出折衷选择。

2.2 滤波器设计中的切比雪夫多项式应用

2.2.1 滤波器的基本概念

滤波器是用于允许特定频率范围内的信号通过,同时阻止其他频率信号的电子电路或算法。在信号处理领域,滤波器扮演着至关重要的角色,因为它们帮助我们处理和分析信号,例如在通信、音频处理和医疗成像等不同领域。

滤波器的基本性能由其幅度和相位响应决定。幅度响应表示滤波器在不同频率下的增益或衰减程度,而相位响应描述了滤波器对信号相位的影响。理想情况下,滤波器应该在通带内提供平坦的幅度响应,并在阻带内提供尽可能陡峭的滚降。

2.2.2 切比雪夫多项式在滤波器设计中的作用

切比雪夫多项式在滤波器设计中的作用是优化滤波器的频率选择特性。通过在特定的频率范围内引入等波纹波动,切比雪夫多项式允许设计者更精确地控制滤波器的幅度响应。

例如,第一类切比雪夫多项式可以用来设计具有等波纹通带和单调阻带的低通滤波器。另一方面,第二类切比雪夫多项式更适用于带通和带阻滤波器,因为它们自然具有两个等波纹的振荡区域。

为了实现滤波器设计,工程师首先需要确定滤波器规格,例如通带和阻带的边缘频率、最大衰减以及允许的波动大小。随后,通过设计过程中的数学优化,选择适当的切比雪夫多项式,工程师可以得到一组多项式系数,这些系数被用来实现滤波器的各个组件。

在设计过程中,多项式的阶数决定了滤波器的复杂性和性能。高阶切比雪夫多项式可以提供更陡峭的滚降,但同时也引入了更高的相位失真和设计上的挑战。

设计完成后,可以在特定的电路模拟软件中验证滤波器性能。软件工具能够根据提供的多项式系数生成电路布局,并通过仿真实现设计与实际应用之间的紧密匹配。

在下一节中,我们将探讨切比雪夫滤波器的两种类型,分别介绍I型和II型切比雪夫滤波器的特点和设计案例,进一步深入理解切比雪夫多项式在滤波器设计中的应用。

3. I型切比雪夫滤波器特点

3.1 I型切比雪夫滤波器的特性分析

3.1.1 频率响应特性

I型切比雪夫滤波器是一种常见的滤波器类型,以其在通带或阻带中出现的等波纹特性而著称。在频率响应上,I型切比雪夫滤波器具有以下特点:

  • 通带波动 :I型切比雪夫滤波器在通带中呈现出等幅波动,也就是说,滤波器的增益不是恒定的,而是在通带内按照特定的规律变化。这种波动对滤波器的性能产生显著影响,因为它会在通带内造成一定的失真。
  • 阻带衰减 :与通带波动相比较,I型切比雪夫滤波器在阻带中具有更快的衰减速率,这意味着滤波器对阻带内的信号有很好的抑制作用。这种特性使其在需要对阻带信号进行严格限制的场合中特别有用。
  • 阶数选择 :滤波器的阶数直接影响频率响应。一般来说,滤波器的阶数越高,通带和阻带内的波动就越小,滤波器的过渡带也就越窄。

3.1.2 群延迟特性

群延迟是衡量滤波器性能的另一个重要参数,它定义为信号的包络通过滤波器时产生的延迟。对于I型切比雪夫滤波器,群延迟特性具有以下特点:

  • 非线性 :由于I型切比雪夫滤波器在通带内有等幅波动,其群延迟特性是非线性的。这意味着不同频率的信号成分通过滤波器时会有不同程度的延迟。
  • 最小化策略 :在某些应用中,为了降低群延迟的影响,设计者会寻求最优的滤波器设计,以尽可能减少群延迟带来的失真。
  • 滤波器阶数的影响 :滤波器的阶数增加可以减小群延迟波动的范围,但是会提高滤波器设计和实现的复杂度。

I型切比雪夫滤波器的设计者通常需要在这些特性之间进行权衡,以满足特定应用的需求。

3.2 I型切比雪夫滤波器设计案例

3.2.1 设计步骤详解

设计I型切比雪夫滤波器通常包含以下步骤:

  1. 确定规格 :首先,需要确定滤波器的技术规格,包括通带截止频率、阻带截止频率、通带波动(或最大衰减)、阻带最小衰减等参数。
  2. 计算阶数和截止频率 :根据规格要求计算滤波器的最小阶数和归一化截止频率。这通常通过查表或使用特定的计算公式来完成。
  3. 设计多项式 :确定切比雪夫多项式和对应的频率变换,以便将滤波器从归一化形式转换为实际所需的频率特性。
  4. 确定电路元件 :根据设计的多项式,计算所需的电感、电容等电路元件的值。这可以通过模拟或数字方法来完成。
  5. 仿真与优化 :使用电路仿真软件对设计的滤波器进行仿真,验证其频率响应特性。如果不符合要求,则需返回到前面的设计步骤进行必要的调整。

3.2.2 设计中遇到的问题及解决方法

在I型切比雪夫滤波器设计过程中,经常会遇到一些问题:

  • 频率失配 :由于元件的容差、温度变化等因素,实际的滤波器性能可能与设计要求有所偏离。解决这个问题通常需要引入容差分析和温度补偿技术。
  • 元件非理想性 :实际电路元件的非理想性会导致滤波器性能的降低。可以通过选择高品质因素(Q)的元件或使用有源元件来改善这个问题。
  • 计算复杂度 :高阶滤波器的设计和仿真可能非常复杂和耗时。通过使用现代电子设计自动化(EDA)工具或优化算法可以有效减少设计时间。

通过这些问题的分析和解决,我们可以进一步优化I型切比雪夫滤波器的设计流程,提高设计的可靠性和效率。

4. II型切比雪夫滤波器特点

4.1 II型切比雪夫滤波器与I型的对比

4.1.1 两种滤波器性能差异分析

II型切比雪夫滤波器,又称作逆切比雪夫滤波器,与I型切比雪夫滤波器相比,在通带响应上展示了不同的特性。在频率特性图上,II型滤波器的通带具有等波纹特性,这意味着它允许在通带内的某些频率点出现振荡。但其最大的区别在于通带与阻带的过渡带宽度。II型滤波器的过渡带比I型滤波器更宽,这在一些应用场合中可以接受,尤其是在对阻带衰减要求不是极端严格的场景。

通带内的等波纹特性使得II型滤波器在一定程度上具有更平滑的相位响应,这在某些信号处理应用中非常有价值。然而,这种特性也带来了滤波器设计时复杂性的增加,因为设计师需要在通带波纹和过渡带宽度之间进行权衡。

4.1.2 应用场景的选择

根据滤波器的应用需求,选择I型或II型滤波器时需要考虑以下几个方面:

  • 对通带波动的容忍度:如果应用场景对通带内的波动比较敏感,那么应该选择II型滤波器。
  • 对阻带衰减的要求:如果阻带衰减是主要考虑因素,而过渡带宽度可以放宽要求,那么I型滤波器可能是更好的选择。
  • 电路的复杂度:II型滤波器往往在实现时电路更为复杂,成本和体积可能更大。

综上所述,II型切比雪夫滤波器在设计时更加注重通带的平坦度,而I型则更强调阻带的快速衰减。设计师在实际应用中,应根据具体需求权衡两者之间的差异,做出最合适的设计选择。

4.2 II型切比雪夫滤波器设计实践

4.2.1 设计流程与参数选择

II型切比雪夫滤波器的设计流程通常包括以下步骤:

  1. 确定设计规格:包括通带截止频率(fp)、阻带截止频率(fs)、通带最大波纹(Rp)以及阻带最小衰减(As)。
  2. 计算滤波器的阶数:根据规格指标,利用切比雪夫多项式和滤波器设计公式确定滤波器的最小阶数。
  3. 确定滤波器元件值:根据计算出的阶数,选用合适类型的滤波器(如低通、高通、带通、带阻),并使用相关的参数方程式来计算电路元件的精确值。
  4. 电路实现:将计算出的元件值应用到电路设计中,这可能包括电阻、电容或电感等。

参数选择对于II型切比雪夫滤波器来说是一个关键步骤。滤波器的设计要求通常决定了通带波纹大小和阻带衰减的要求。设计者必须平衡这些参数,以确保滤波器既满足性能指标,又具备实际应用的可行性。

4.2.2 实际应用案例解析

让我们来看一个II型切比雪夫滤波器设计的实际案例。假设我们需要设计一个低通滤波器,用于音频系统中,要求通带内的频率范围为0至2 kHz,通带最大波动不超过0.5 dB,阻带从2.5 kHz开始衰减至少为40 dB。

设计步骤如下:

  1. 利用滤波器设计软件或公式库,根据上述规格,计算出滤波器的最小阶数为5。
  2. 确定滤波器类型为低通,并根据切比雪夫多项式,计算出电路中的电容、电阻的值。
  3. 设计电路,包括必要的保护电路和接口电路。

在实际应用中,设计者可能需要进行电路仿真,验证元件值的正确性。此外,还需要考虑实际元件的公差问题,以及可能的温度和老化影响,这些因素都可能对滤波器的性能产生影响。因此,设计过程中还应包括预留一定的设计余量,确保滤波器在实际使用中能够稳定工作。

(请注意,以上是设计过程的理论描述。在真实的滤波器设计中,还需要进行必要的调整和测试来优化性能。)

5. remez算法原理及实现

5.1 remez算法的数学原理

5.1.1 算法的提出背景与理论基础

remez算法,又称Parks-McClellan算法,是在数字信号处理领域中设计FIR滤波器的一种常用算法。该算法由Jury和Parks以及McClellan独立发现,它利用切比雪夫逼近理论来生成具有最小化最大误差的滤波器系数。remez算法的提出背景是寻找一种更高效的滤波器系数计算方法,以替代较早的窗函数法和频率采样法。

算法的理论基础可以追溯到切比雪夫多项式和切比雪夫逼近理论。在滤波器设计中,利用切比雪夫多项式可以得到一个在通带或阻带中具有等波纹特性的逼近解。remez算法正是应用这一理论,通过迭代过程,在满足给定规格的条件下,找到一组滤波器系数,使得所设计的滤波器在特定的频率点上误差最小化。

5.1.2 算法的优化策略

remez算法的一个关键优化策略是使用交错定理(交错定理指出了理想响应与实际FIR滤波器频率响应之间的极值点交错出现的特性),通过交替选择极值点和非极值点进行线性规划,从而迭代逼近最优化的滤波器系数。优化过程中通常使用切比雪夫范数作为误差度量标准,目的是最小化最大误差。

为了提高算法的稳定性和收敛速度,通常会采取一些预处理措施。比如,初始化时选择一个良好的初值可以显著减少迭代次数,而正则化技术则有助于避免数值问题。

5.2 remez算法在滤波器设计中的应用

5.2.1 算法实现流程

remez算法的实现流程通常包含以下步骤:

  1. 确定滤波器的规格参数,包括通带、阻带的截止频率和衰减要求。
  2. 选择一个合适的初始频率响应作为迭代的起点。
  3. 根据滤波器规格确定极值点和非极值点的频率位置。
  4. 通过线性规划求解滤波器系数,确保在极值点处的误差最小。
  5. 检查所得滤波器的响应是否满足设计规格,如未满足返回步骤3继续迭代。
  6. 最后得到满足要求的FIR滤波器系数。

5.2.2 设计实例与性能评估

下面是一个使用remez算法设计低通滤波器的实例,代码实现使用Python语言并利用 scipy 库:

import numpy as np
from scipy.signal import remez, freqz
import matplotlib.pyplot as plt

# 滤波器设计规格
numtaps = 51  # 滤波器阶数
bands = [0, 0.3, 0.4, 0.5, 1.0]  # 通带和阻带边界频率
desired = [1, 0]  # 通带和阻带理想增益

# 使用remez算法计算滤波器系数
taps = remez(numtaps, bands, desired, type='band')

# 计算滤波器的频率响应
w, h = freqz(taps, worN=8000)

# 绘制频率响应图
plt.figure()
plt.plot(0.5*w/np.pi, np.abs(h), 'b')
plt.title('Frequency response')
plt.xlabel('Frequency (Hz)')
plt.ylabel('Gain')
plt.grid(True)
plt.show()

在上述代码中,我们定义了一个低通滤波器的规格,其中通带截止频率为0.3(归一化频率),阻带起始频率为0.4,阻带最小衰减为1(即通带最大增益为1),阻带衰减为0(即阻带增益为0)。通过调用remez算法,我们得到了滤波器的系数,并绘制了其频率响应图。

性能评估通常涉及以下几个方面:

  • 通带和阻带的波纹幅度 :理想情况下,通带内波纹和阻带内波纹应尽可能小。
  • 过渡带宽度 :过渡带越窄,滤波器性能越好。
  • 群延迟特性 :理想情况下,滤波器的群延迟在整个通带内应保持恒定。

经过性能评估后,我们可以判断设计出的滤波器是否满足原设计要求。如果性能不达标,则需要调整滤波器的规格参数或算法的实现细节,并重新进行迭代设计过程。

6. 切比雪夫滤波器在多领域中的应用

6.1 切比雪夫滤波器在通信系统中的应用

6.1.1 通信系统对滤波器的基本要求

在通信系统中,滤波器扮演着至关重要的角色。它们是信号处理和传输的关键组件,能够确保信息的完整性和准确性。理想的滤波器应当满足以下基本要求:

  • 选择性 :滤波器需要能够区分相邻频道的信号,允许特定频率范围内的信号通过,同时阻止其他频率范围的信号。这种能力称为选择性,是通信系统中区分不同信号的重要参数。
  • 平坦的通带 :在通带内,滤波器的增益应当尽可能平坦,以避免信号幅度的波动,这在多频道通信系统中尤为重要。
  • 陡峭的过渡带 :从通带过渡到阻带的区域,滤波器的衰减应当迅速且显著,以减少邻近频道信号的干扰。
  • 低损耗 :在通带内,滤波器的插入损耗应尽可能小,以保证信号的传输效率。
  • 温度稳定性 :滤波器在不同温度下的性能应当保持稳定,避免由于温度变化引起性能波动。
  • 尺寸和成本 :在满足性能要求的前提下,滤波器的尺寸和成本也是重要的考虑因素,特别是在移动通信设备中。

6.1.2 切比雪夫滤波器在通信中的实践案例

在实践中,切比雪夫滤波器以其在通带或阻带内具有等波纹特性而被广泛应用于通信系统。例如,在移动电话的接收器设计中,切比雪夫滤波器被用来优化多频段接收性能,它允许手机接收器在保持高选择性的同时,对多个频段的信号进行分离和接收。

一个典型的实践案例是GSM(全球移动通信系统)手机的设计。GSM系统工作在不同的频率范围内,为了优化接收器的性能,工程师会设计切比雪夫滤波器以确保在这些频段内获得最佳的选择性和最小的干扰。在设计过程中,工程师需要精确计算滤波器的阶数和转折频率,以满足GSM标准对滤波器性能的具体要求。

此外,切比雪夫滤波器的等波纹特性使得它在需要在通带内提供更加一致增益的应用场景中也具有优势。例如,在广播卫星的下行链路中,使用切比雪夫滤波器可以确保所有用户接收到的信号具有较为均衡的功率水平。

6.2 切比雪夫滤波器在其他领域的应用

6.2.1 在雷达信号处理中的应用

雷达系统要求滤波器能够在各种复杂环境下准确地检测和处理信号。切比雪夫滤波器由于其在通带和阻带内具有非常尖锐的衰减特性,因此在雷达信号处理中非常有用。以下是雷达系统中切比雪夫滤波器应用的几个方面:

  • 目标检测 :在雷达系统中,切比雪夫滤波器可以被用来过滤掉噪声和杂波,提高目标检测的准确性。其陡峭的过渡带可以减少邻近目标或杂波的干扰,确保仅对特定频率的回波信号进行检测。
  • 信号分离 :多目标环境下的雷达系统需要将各个目标的信号分离出来,切比雪夫滤波器可以确保每个目标的回波信号不会与其它目标信号混淆,从而提高分辨率。
  • 干扰抑制 :雷达系统可能遭受各种类型的干扰,比如敌方干扰、环境杂波等。切比雪夫滤波器可以被设计来专门抑制特定类型的干扰,从而提高系统的稳健性。

6.2.2 在音频处理中的应用

在音频处理领域,切比雪夫滤波器同样发挥着其特性优势,尤其是在需要精细调整音质和频率响应的应用中。例如:

  • 音响系统 :在高级音响系统中,切比雪夫滤波器可以用来构建分频器,分频器将音频信号分成高音、中音和低音等部分,然后分配给相应的扬声器。切比雪夫滤波器的等波纹特性可以确保在通带内的频率响应更加均匀,从而得到更优质的音频体验。
  • 麦克风前置放大器 :在前置放大器设计中,切比雪夫滤波器可以用于抑制音频频段之外的信号,避免不必要的噪声被放大,同时保证音频信号的纯净度和质量。

以上应用案例展现了切比雪夫滤波器在多个领域的广泛应用和重要性。无论是在需要极高选择性的通信系统、对信号分离要求严格的雷达系统,还是在追求音质提升的音频处理设备中,切比雪夫滤波器都是实现复杂功能的关键组件。

7. 切比雪夫滤波器设计的编程实践与资源

在这一章中,我们将深入探讨如何通过编程来实现切比雪夫滤波器的设计。我们还会讨论一些可用于设计和优化滤波器的资源和工具,以及未来在这一领域的潜在发展趋势。

7.1 编程实现切比雪夫滤波器

7.1.1 编程语言选择与环境搭建

要编程实现切比雪夫滤波器,首先需要选择合适的编程语言。Python由于其简洁性和强大的数值计算库(如NumPy和SciPy)而成为了一个非常受欢迎的选择。另一个备选方案是使用MATLAB,它在工程领域中广泛使用,并提供了大量内置的信号处理功能。

Python环境搭建
  1. 安装Python解释器。
  2. 使用pip包管理器安装必要的库,例如numpy和scipy。
pip install numpy scipy
  1. 验证安装:
import numpy
import scipy.signal

7.1.2 编程实现步骤与代码分析

一旦环境搭建完成,我们可以开始编写代码来实现切比雪夫滤波器。以下是使用Python和SciPy库实现一个I型切比雪夫滤波器的基本步骤和代码示例:

import numpy as np
from scipy import signal
import matplotlib.pyplot as plt

# 设定滤波器的阶数和通带、阻带频率
N = 5  # 滤波器阶数
Wp = 0.4  # 通带截止频率(归一化)
Ws = 0.5  # 阻带截止频率(归一化)

# 计算切比雪夫多项式的参数
Rp = 1  # 通带波纹 (dB)
Rs = 60  # 阻带衰减 (dB)
z, p, k = signal.cheb1ord([Wp, Ws], [0, 0.6], Rp, Rs)
b, a = signal.cheby1(N, Rp, Wp, 'low', analog=False)

# 计算滤波器的频率响应
w, h = signal.freqz(b, a)

# 绘制频率响应
plt.title('Chebyshev Type I Filter Frequency Response')
plt.plot(0.5*np.pi*w/np.pi, np.log10(abs(h)))
plt.ylabel('Amplitude Response [dB]')
plt.xlabel('Frequency [Hz]')
plt.grid()
plt.show()

在上述代码中,我们首先导入了必要的库,并定义了滤波器设计参数。接着,我们使用 cheb1ord 函数来计算滤波器阶数和截止频率, cheby1 函数来设计滤波器的系数。最后,我们使用 freqz 函数计算滤波器的频率响应,并通过Matplotlib绘制出来。

7.2 资源与工具介绍

7.2.1 现有设计软件和工具的比较

除了编程实现切比雪夫滤波器外,市场上存在许多现成的软件和工具。在比较时,我们需要关注几个关键点:

  • 用户界面 :软件是否提供了一个直观易用的界面。
  • 功能特性 :软件是否提供丰富的滤波器设计功能和优化选项。
  • 性能评估 :软件是否具备精确的性能评估工具。
  • 扩展性 :软件是否支持用户自定义组件和算法。

7.2.2 开源资源和社区的支持

开源资源和社区支持对于工程师和研究人员来说是一个宝贵的资源。以下是一些在信号处理领域里著名的开源项目和社区:

  • GNU Radio : 一个用于信号处理的开源工具包,广泛用于软件定义无线电和无线通信系统的原型开发。
  • OpenCV : 主要针对图像处理和计算机视觉,也提供信号处理相关功能。
  • Signal Processing Stack Exchange : 一个提供问题解答的社区,可以找到很多切比雪夫滤波器相关的问题和讨论。

7.3 切比雪夫滤波器设计的未来趋势

7.3.1 技术发展方向预测

随着技术的发展,我们可以预测未来的切比雪夫滤波器设计将趋向于更高的集成度、更快的计算速度和更好的性能。这包括使用机器学习算法来优化滤波器参数,以及在硬件上实现更加高效的滤波器设计。

7.3.2 对行业的影响预估

预计切比雪夫滤波器设计的创新将对通信、雷达、音频处理等多个行业产生深远的影响。随着技术的进步,滤波器将变得更加智能,能够适应动态变化的环境和需求,从而提高系统的性能和可靠性。

本文还有配套的精品资源,点击获取 menu-r.4af5f7ec.gif

简介:切比雪夫曲线拟合技术广泛应用于信号处理和滤波理论,基于切比雪夫多项式以优化滤波器的频率响应特性。该技术包括两种切比雪夫滤波器:I型在通带内具有等波纹频率响应,II型在阻带内具有等波纹频率响应。remez算法是设计此类滤波器的关键,通过迭代寻找最佳系数以逼近理想响应。本文档包含了实现remez算法的Pascal语言代码和相关资料,有助于理解和应用该技术。


本文还有配套的精品资源,点击获取
menu-r.4af5f7ec.gif

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值