hopfileld神经网络_Hopfield神经网络 | 学步园

1982年,生物物理学家J.Hopfield提出了一种新颖的人工神经网络模型——Hopfield网络模型,引入了能量函数的概念,是一个非线性动力学系统。

(1) 离散的Hopfield网络用于联想记忆

(2) 连续的Hopfield网络用于求解最优化问题

1. 离散型Hopfield神经网络

能量函数:

能量函数E按照迭代一定会下降(证明我一直卡在一个地方,后来发现xi改变了,不仅改变了该节点的能量,而且对其它节点也有影响,故把证明贴上来,免得自己忘记)

证明:

无论x从-1变到1还是从1变到-1,能量都是下降的。

特点:结点输出为-1或+1

用途:联想记忆(自联想,互联想)

(1) 先训练出权值w

(2) 根据输入进行迭代,回忆出联想的结果

2. 连续型Hopfield神经网络

能量函数:

其中f为signmoid函数,能量函数E按照迭代一定会下降(证明请见专门教材)

特点:结点输出为(-1, +1)间的连续值

用途:最优化求解(如TSP问题)

(1) 把目标函数转化为网络的能量函数

(2) 问题的变量对应于网络的状态

(3) 当网络的能量函数收敛于极小值时,网络的状态对应最优解

小结:

优点:成功解决了TSP问题

缺点:因为是贪心

参考文献:

[1] 马锐. [M] 人工神经网络原理. 机械工业出版社

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值