1982年,生物物理学家J.Hopfield提出了一种新颖的人工神经网络模型——Hopfield网络模型,引入了能量函数的概念,是一个非线性动力学系统。
(1) 离散的Hopfield网络用于联想记忆
(2) 连续的Hopfield网络用于求解最优化问题
1. 离散型Hopfield神经网络
能量函数:
能量函数E按照迭代一定会下降(证明我一直卡在一个地方,后来发现xi改变了,不仅改变了该节点的能量,而且对其它节点也有影响,故把证明贴上来,免得自己忘记)
证明:
无论x从-1变到1还是从1变到-1,能量都是下降的。
特点:结点输出为-1或+1
用途:联想记忆(自联想,互联想)
(1) 先训练出权值w
(2) 根据输入进行迭代,回忆出联想的结果
2. 连续型Hopfield神经网络
能量函数:
其中f为signmoid函数,能量函数E按照迭代一定会下降(证明请见专门教材)
特点:结点输出为(-1, +1)间的连续值
用途:最优化求解(如TSP问题)
(1) 把目标函数转化为网络的能量函数
(2) 问题的变量对应于网络的状态
(3) 当网络的能量函数收敛于极小值时,网络的状态对应最优解
小结:
优点:成功解决了TSP问题
缺点:因为是贪心
参考文献:
[1] 马锐. [M] 人工神经网络原理. 机械工业出版社