正态分布的峰度和偏度分别为_用 Python 讲解偏度和峰度

本文介绍了偏度和峰度的概念,它们是衡量数据分布非对称性和陡峭程度的统计量。通过Python代码展示了如何计算偏度和峰度,并利用一元线性回归的数据实例解释了正态性检验,包括Omnibus和Jarque-Bera检验。文章旨在帮助读者理解偏度、峰度在数据分析中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

5f7f2f3d9ed7d97812b51a501a9a0a70.png

之前笔者在做一个金融数据项目时,有朋友问我,衡量股票收益率有没有什么好的方法。这个问题让笔者也思索了好久,其实股票的收益率如果我们从本质来看不就是数据吗,无非就是收益率我们就想让其越高越好,也就是让这个数据增加得越多越好。而衡量数据我们经常用到的方法有均值、方差、偏度和峰度。均值和方差是我们见到和用到最多的方法,甚至在中学课本里都有提及,那么笔者今天就讲一下偏度和峰度这两个大家不太常用的方法,并结合python代码讲一下偏度和峰度在数据分析中的简单应用。

首先还是介绍一下偏度和峰度的概念。

f64a8ab4330e230b852cc605c442860c.png

图1. 偏度和峰度公式

偏度(skewness)又称偏态、偏态系数,是描述数据分布偏斜方向和程度的度量,其是衡量数据分布非对称程度的数字特征。对于随机变量X,其偏度是样本的三阶标准化矩,计算公式如图1中的式(1)所示。

偏度的衡量是相对于正态分布来说,正态分布的偏度为0。因此我们说,若数据分布是对称的,偏度为0;若偏度>0,则可认为分布为右偏,也叫正偏,即分布有一条长尾在右;若偏度<0,则可认为分布为左偏,也叫负偏,即分布有一条长尾在左。正偏和负偏如图2所示,在图2中,左边的就是正偏,右边的是负偏。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值