最小二乘法浅析--逐飞科技
为什么要讨论这个方法,因为在智能车制作的过程中经常遇到求斜率这样的问题,但由于数据是离散的,普通方法不是很方便,效果也不是太好,这个时候最小二乘法就可以派上用场,比如用于曲线拟合,使用最小二乘法来拟合这些离散的点,拟合了之后就可以根据曲线来补线,通过这种方法来补线的效果应该还是不错的,当然用处一定不止这一点,其他需求或场景就需要根据自己的想法来使用了,我们今天主要讲讲方法的原理和拟合的方法,接下来进入正文。
一、什么是最小二乘法
最小二乘法(又称最小平方法)是一种数学优化技术。它通过最小化误差的平方和寻找数据的最佳函数匹配。利用最小二乘法可以简便地求得未知的数据,并使得这些求得的数据与实际数据之间误差的平方和为最小。简单的说,这里的“二乘”指的是用平方来度量观测点与估计点的远近(在古汉语中“平方”称为“二乘”),“最小”指的是参数的估计值要保证各个观测点与估计点的距离的平方和达到最小。如下图所示是一个线性拟合,红色的线代表观测点与估计点的距离,使得这些距离的平方和最小这样就是最小二乘法。
二、直线拟合计算
三、直线拟合matlab仿真
我们使用matlab来实际验证一下,代码如下:
%录入X轴数据
for a = 1:30
x(a) = a-1;
end
%录入Y轴数据
y=[1,2,3,8,6,9,5,4,8,5,9,19,16,12,15,24,22,36,40,40,32,32,36,39,52,52,