对数据集做标准化处理的几种方法——基于R语言

本文介绍了在R语言中对数据集进行标准化处理的三种方法:使用scale函数,自建函数以及caret包的preProcess函数。通过示例详细解释了每种方法的实现过程,包括数据的中心化和标准化操作。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

数据集——iris(R语言自带鸢尾花包)

一、scale函数

scale函数默认的是对制定数据做均值为0,标准差为1的标准化。它的两个参数center和scale:

1)center和scale默认为真,即T

2)center为真表示数据中心化

3)scale为真表示数据标准化

中心化:所谓数据的中心化是指数据集中的各项数据减去数据集的均值。

标准化:标准化就是数据在中心化之后再除以标准差。变换后值域为[0,1]。

# 标准化与中心化
data(iris) # 读入数据
head(iris) #查看数据

Standard0<-scale(iris[1:4])
head(Standard0)
Standard1<-scale(iris[1:4],center=T)
head(Standard1)
Standard2<-scale(iris[1:4],center=F,scale=T)
head(Standard2)

二、用自建函数法

test <- iris
normalize <-
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值