hdu1255 覆盖面积

本文介绍了一种解决HDU1255覆盖面积问题的方法,通过求解多个矩形区域中被覆盖至少两次的总面积。采用线段树数据结构,并通过排序和区间更新操作来实现高效的计算。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

hdu1255 覆盖面积

题意:求N个矩形中,求被覆盖至少俩次的面积和

分析:一开始以为用总面积减去面积并就可以了,可是想了想,当面积被覆盖了俩次以上,就漏减 了,所以只能老老实实算了。

具体方法跟求面积并十分类似,求面积并时,排完序之后,每次插入一条线段之后,求出整个区间当前被覆盖的总长度再乘以 前后俩条线段的水平距离;

而这道题目,每次插入一条线段之后,求整个区间当前被覆盖至少俩次的总长度再乘以水平距离,;

要求整个区间被覆盖至少俩次的总长度,只需在原有代码上添加几个更新而已,具体代码附了解释

#include<iostream>
#include<algorithm>
#define maxn 2222
using namespace std;
struct node
{
	double x,y1,y2;
	int s;
	node(double a=0,double b=0,double c=0,int d=0):x(a),y1(b),y2(c),s(d){}
	friend bool operator<(const node a,const node b)
	{
		return a.x<b.x;
	}
};
node ss[maxn];
bool cmp(node a,node b)
{
	return a.x<b.x;
}
double len[maxn<<2],inlen[maxn<<2];
int cnt[maxn<<2];
double map1[maxn];
void PushUp(int k,int s,int t)
{
	if(cnt[k])
		len[k]=map1[t+1]-map1[s];
	else if(t==s)
		len[k]=0;
	else len[k]=len[k<<1]+len[k<<1 |1];
}
void inPushUp(int k,int s,int t)
{
	if(cnt[k]>=2)//若被覆盖了俩次以上,则inlen[k]等于区间长度
		inlen[k]=map1[t+1]-map1[s];
	else if(t==s)//叶节点,等于零
		inlen[k]=0;
	else if(cnt[k]==1)//若该区间整体被覆盖过一次,则inlen[k]等于子区间被覆盖过一次的线段长度之和
		inlen[k]=len[k<<1]+len[k<<1|1];
	else inlen[k]=inlen[k<<1]+inlen[k<<1 |1];//若整体没被标记过,则inlen[k]等于子区间被覆盖过俩次的线段长度之和
}
void update(int l,int r,int c,int s,int t,int k)
{
	if(l<=s && t<=r)
	{
		cnt[k]+=c;
		PushUp(k,s,t);
		inPushUp(k,s,t);
		return ;
	}
	int kl=k<<1,kr=kl+1,mid=(s+t)>>1;
	if(l<=mid)
		update(l,r,c,s,mid,kl);
	if(r>mid)
		update(l,r,c,mid+1,t,kr);
	PushUp(k,s,t);
	inPushUp(k,s,t);
}
int Bin(double key,int n,double map1[]) {
	int l = 0 , r = n - 1;
	while (l <= r) 
	{
		int mid = (l + r) >> 1;
		if (map1[mid] == key) return mid;
		if (map1[mid] < key) l = mid + 1;
		else r = mid - 1;
	}
	return -1;
}
int main()
{
	double a,b,c,d;
	int n,T;
	scanf("%d",&T);
	while(T--)
	{
		scanf("%d",&n);
		int m=0;
		for(int i=0;i<n;i++)
		{
			scanf("%lf %lf %lf %lf",&a,&b,&c,&d);
			map1[m]=b;
			ss[m++]=node(a,b,d,1);
	    	map1[m]=d;
			ss[m++]=node(c,b,d,-1);
		}
		sort(map1,map1+m);
		sort(ss,ss+m);
		int k=1;
		for (int i = 1 ; i < m ; i ++) 
			if (map1[i] != map1[i-1])
				map1[k++] =map1[i];
		memset(cnt , 0 , sizeof(cnt));
		memset(len , 0 , sizeof(len));
		memset(inlen , 0 , sizeof(inlen));
		double ans=0.0;
		for(int i=0;i<m-1;i++)
		{
			int l = Bin(ss[i].y1 , k , map1);
			int r = Bin(ss[i].y2 , k , map1) - 1;
			if (l <= r)
				update(l , r , ss[i].s , 0 , k - 1, 1);
			ans+=inlen[1]*(ss[i+1].x-ss[i].x);
		}
		printf("%.2f\n",ans);
	}
	return 0;
}

转载于:https://www.cnblogs.com/nanke/archive/2011/10/02/2198255.html

资源下载链接为: https://pan.quark.cn/s/f989b9092fc5 在 Android 应用开发中,开发一款仿 OPPO 手机计算器的应用是极具实践价值的任务,它融合了 UI 设计、事件处理以及数学逻辑等多方面的技术要点。当前的“最新版仿 OPPO 手机计算器--android.rar”压缩包中,提供了该计算器应用的源代码,这为开发者深入学习 Android 编程提供了宝贵的资源。 UI 设计是构建此类计算器应用的基石。OPPO 手机的计算器界面以清晰的布局和良好的用户交互体验著称,其中包括数字键、运算符键以及用于显示结果的区域等关键元素。开发者需借助 Android Studio 中的 XML 布局文件来定义这些界面元素,可用 LinearLayout、GridLayout 或 ConstraintLayout 等布局管理器,并搭配 Button 控件来实现各个按键功能。同时,还需考虑不同分辨率屏幕和设备尺寸的适配问题,这通常涉及 Density Independent Pixel(dp)单位的应用以及 Android 尺寸资源的合理配置。 事件处理构成了计算器的核心功能。开发者要在每个按钮的点击事件中编写相应的处理代码,通常通过实现 OnClickListener 接口来完成。例如,当用户点击数字键时,相应的值会被添加到显示区域;点击运算符键时,则会保存当前操作数并设定运算类型。而对于等号(=)按钮,需要执行计算操作,这往往需要借助栈数据结构来存储操作数和运算符,并运用算法解析表达式以完成计算。 数学逻辑的实现则是计算器功能的关键体现。在 Android 应用中,开发者可以利用 Java 内置的 Math 类,或者自行设计算法来完成计算任务。基本的加减乘除运算可通过简单的算术操作实现,而像求幂、开方等复杂运算则需调用 Math 类的相关方法。此外
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值