时序图检验:该序列有明显的趋势性或周期性,则不是平稳序列自相关图检验:(acf函数)平稳序列具有短期相关性,即随着延迟期数k的增加,平稳序列的自相关系数ρ会很快地衰减向0( 指数级衰减),反之非平稳序列衰减速度会比较慢
- 构造检验统计量进行假设检验:单位根检验adfTest()——fUnitRoots包
2、纯随机性检验、白噪声检验(Box.test(data,type,lag=n)——lag表示输出滞后n阶的白噪声检验统计量,默认为滞后1阶的检验统计量结果)
1、Q统计量:type=“Box-Pierce”2、LB统计量:type=“Ljung-Box”
二、模型
1、ARMA平稳序列模型
1.1平稳性检验1.2ARMA的p、q定阶——acf(),pacf(),auto.arima()自动定阶1.3建模arima()1.4模型显著性检验:残差的白噪声检验Box.test();参数显著性检验t分布
2、非平稳确定性分析
2.1趋势拟合:直线、曲线(一般是多项式,还有其它函数)2.2平滑法
- 移动平均法:SMA()——TTR包
- 指数平滑法:HoltWinters()
3、非平稳随机性分析
3.1ARIMA
1平稳性检验,差分运算2拟合ARMA3白噪声检验
3.2疏系数模型arima(p,d,f)
3.3季节模型
可以叠加的模型
4、残差自回归模型:
4.1建立线性模型4.2对滞后的因变量间拟合线性模型,对模型做残差自相关DW检验。dwtest()——lmtest包,增加选项order.by指定延迟因变量4.3对残差建立ARIMA模型
5、条件异方差模型:异方差检验:LM检验ArchTest()——FinTS包,用ARCH、GARCH模型建模
第一章 简介
- 统计时序分析方法:
1、频域分析方法2、时域分析方法
- 步骤: