Spring-AI 高阶实战: 基于策略模式的大模型聊天应用架构设计与实现

代码示例

https://github.com/aurora-ultra/aurora-spring-ai

概要

本文聚焦如何使用spring-AI来开发大模型应用一些进阶技能,包含一套可落地的技术设计模式,读完你将会学习到:

  • 如何使用Spring-AI 开发大模型对话应用
  • 如何综合设计一套适用Spring-ai的代码结构,为应用提供更好的扩展能力

本文假设读者已经熟悉spring-ai的基本功能以及大模型开发的入门知识,如果你还不熟悉这些基础知识,可以找我仔细学习。

开发目标

我们会简单的模拟豆包的业务模型,开发一个用户与大模型对话的应用程序,我们会从领域模型开始设计,一直到应用模型和应用实现。

由于篇幅有限,我们不展开细节完成每一个功能,这里只介绍核心领域建模和应用的开发模式。

我们将会聚焦一次对话的处理流程,如下图所示:

  • 本地工具集也就是function calling 可以随时添加,删除,并且根据对话上下文动态抉择
  • 向量数据库搜索可以根据对话上下文选择是否使用,甚至提供多个选择

# 设计领域模型

  1. Agent 表示一个大模型agent,包括大模型的命名,SystemPrompt,所属用户等
  2. Conversation 表示一次对话
  3. User 表示正在使用系统的用户
  4. ChatMessage表示一个对话消息,一个对话消息由多个内容组成,因为一次对话可以发送包括文本和媒体多条具体内容。

至此,我们简单模拟了豆包的领域模型

设计应用模型

  既然我们在最开始设计了领域模型,我么也很自然的会设计应用模型,首先应用模型需要一个聚合根,用来表示一次对话的处理环境,我们称之为上下文,然后每次对话会包含很多关键元素,比如用户,模型,时间等,其中还有一个就是本次对话的配置选项,因为在与大模型交互的时候,其实我们难免有一些设置项,比如跟哪个模型对话,是否开启互联网锁搜等。

 

首先设计一个 ChatContext类,用来表示一次对话的上下文核心,这里我们分析如下:

  • 对话上下文包含 when,who,what,where,how 五种元素, 这本纸上就是一个5w2h的分析,只不过没有why和how much, 很明显,why 和how muc事根据需求来的,这里我们先不设计。
    • When - 用户发送消息的时间
    • Who - 发送消息的用户
    • What - 用户发送发的消息
    • Where - 用户处于哪一个对话
    • How - 本次对话有哪些配置选项
  • 对话上下文可以配置标记属性,以便在不同功能之间传递消息,这点类似Servlet技术中方的ServletRequest#getAttribute
  • 对话上下文是只读的,不允许修改@Getter
?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
@Builder
public class ChatContext {
     // when     who     what            where           how
     // -------------------------------------------------------------
     // now      user    userMessage     conversation    chatOption
 
     private final Map<String, Object> attributes = new HashMap<>();
 
     private final User user;
     private final UserMessage userMessage;
     private final ChatOption chatOption;
     private final Conversation conversation;
 
     public void setAttribute(String key, Object value) {
         attributes.put(key, value);
     }
 
     public Object getAttribute(String key) {
         return attributes.get(key);
     }
 
     @SuppressWarnings ( "unchecked" )
     public <T> T getAttribute(String key, Class<T> ignored) {
         return (T) attributes.get(key);
     }
}

接着,我们设计一个用户描述本次对话的功能选项,我们希望如下

  • 系统可以配置本次对话是否启用某一种功能,比如内部文档搜索/互联网资料搜索/是否带有记忆功能/是否开启调试模式等等
  • 用户可以选择跟不同的模型对话;
  • 某些功能有特殊的配置
?
1
2
3
4
5
6
7
8
9
10
11
12
13
@Getter
@Builder
@RequiredArgsConstructor
public class ChatOption implements Serializable {
 
     private final boolean enableInternalSearch;
     private final boolean enableExternalSearch;
     private final boolean enableExampleTools;
     private final boolean enableMemory;
     private final boolean enableDebug;
     private final int retrieveTopK;
     private final String model;
}

至此,我们有了可用的对话上下文,可以围绕这个上下文开发对话逻辑了。

设计应用逻辑

首先我们来设计应用的扩展点,其实本质上应该是先设计应用逻辑,再进行重构设计扩展点,但是这里为了行文方便,直接展示下扩展点,免去重构的过程,请读者注意,真实开发的时候不可能一开始就想得到哪些地方需要扩展,一定是先做出基础逻辑,再重构出扩展点点,我们先来分析一下可扩展的点:

  • 对话模型可以切换,系统将会根据上下文推断出本次要使用的模型。
  • 本地方法可以随时增加删除,系统会很久本次上下文推断出需要调用的本地工具。
  • 其他spring-ai框架的的Advisor也可能根据一次对话的上下文被推断出。

由此可见对话上下文是整个应用的重点,所有的功能是否被使用都围绕着这个上下文,并且这些功能在运行的时候会根据上下文动态提供出来,不难看出,这是一个策略模式,于是我们设计如下接口:

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
public interface ChatAdvisorSupplier {
     boolean support(ChatContext context);
     Advisor getAdvisor(ChatContext context);
}
public interface ChatClientSupplier {
     boolean support(ChatContext context);
     ChatClient getChatClient(ChatContext context);
}
public interface ChatTool {
     String getName();
     String getDescription();
}
public interface ChatToolSupplier {
     boolean support(ChatContext context);
     ChatTool getTool(ChatContext context);
}
  • ChatAdvisorSupplier 用来为本次对话提供spring-ai的Advisor
  • ChatClientSupplier 会根据本地对话提供可用的模型client
  • ChatTool 用来表示一个包含本地放的的类,提供了name和desc两个属性,用来让大模型帮我们判断哪些工具在本次对话需要被使用到
  • ChatToolSupplier则会根据当前对话给出哪些本地工具会被使用到。

  几乎每一个接口都有2个方法,一个support,一个getXxx,support用于判断当前的能力是否启用,如果放回true,则表示当前上下文需要这个能力,如果返回false,则当前对话不需要这个能力,这是一个非常典型的策略模式,在spring框架中几乎随处可见。

  下面我们将这些组件串联起来,这样一来,我们的核心交互流程不变,而具体交互流程在策略器中可随时动态增减,当我们开始处理一个对话上下文的时候,首先根据对话上下文找到适合的模型,工具等,这些具体功能由一个个的supplier提供,每个supplier都会根据对话上下文给出自己是否适用,如果适用,我们就让这个supplier提供他的能力,看上去就像下面这样:

实现应用逻辑

  有了上面的接口,我们实现的应用逻辑就简单起来了,只要将接口的调用编排起来就行,之所以设计接口和调用者的好处,就是以后这个应用的核心逻辑应该会很少变动,不论增加什么功能,几乎这个核心逻辑都不需要做什么改动,这就是所谓的高内聚,低耦合,面向扩展开放,面向修改关闭

  试想一下,如果有一天新增了需求,那么大概率是需要新增某种工具调用,某种advisor的调用,这些都不影响你的核心逻辑,我们只需要新增一个实现,或者修改现有的一个实现。

  我们简单来分析一下这个应用逻辑,他需要接受到对话命令ChatCommand,然后组装出对话上下文ChatContext,接着根据对话上下文找到适合的client, tools,advisors,还要从上下文找出本次要发送给大模型的对话消息,最后将大模型返回的消息包装成我们自己的数据结构(ChatReply)返回就行了

  我们来看一下ChatService是如何被实现的。

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
@Slf4j
@Service
@RequiredArgsConstructor
public class ChatService {
     public static final int CHAT_RESPONSE_BUFFER_SIZE = 24 ;
     public static final String CHAT_TOOLS_CHOSEN_MODEL = "gpt-3.5-turbo" ;
 
     private final ChatManager chatManager;
 
     private final List<ChatToolSupplier> chatToolSuppliers;
     private final List<ChatClientSupplier> chatClientSuppliers;
     private final List<ChatAdvisorSupplier> chatAdvisorSuppliers;
 
     public Conversation startConversation(ConversationStartCommand command) {
         // todo implement this method
         throw new NotImplementedException();
     }
 
     public ChatReply chat(ChatCommand command) throws ChatException {
         try {
             var user = User.mock();
             var chatOption = command.getOption();
             var conversation = getConversation(command.getConversationId());
             var userMessage = createUserMessage(command);
             var context = ChatContext.builder()
                     .user(user)
                     .userMessage(userMessage)
                     .chatOption(chatOption)
                     .conversation(conversation)
                     .build();
             return this .chat(context);
         } catch (Exception e) {
             throw ChatException.of( "Something wrong when processing the chat command" , e);
         }
     }
 
     private ChatReply chat(ChatContext context) throws ChatException {
         var tools = getTools(context);
         var advisors = getAdvisors(context);
         var chatClient = getChatClient(context);
         var conversation = context.getConversation();
         var userMessage = context.getUserMessage();
 
         var contents = chatClient
                 .prompt()
                 .advisors(advisors)
                 .messages(conversation.createPromptMessages())
                 .messages(userMessage)
                 .toolCallbacks(ToolCallbacks.from(tools.toArray()))
                 .toolContext(context.getAttributes())
                 .stream()
                 .content()
                 .buffer(CHAT_RESPONSE_BUFFER_SIZE)
                 .map(strings -> String.join( "" , strings));
 
         return ChatReply.builder()
                 .contents(contents)
                 .build();
     }
 
     private UserMessage createUserMessage(ChatCommand command) {
         return new UserMessage(command.getContent());
     }
 
     private Conversation getConversation(String conversationId) {
         return chatManager.getOrCreateConversation(conversationId);
     }
 
     private List<Advisor> getAdvisors(ChatContext context) {
         return chatAdvisorSuppliers
                 .stream()
                 .filter(chatAdvisorSupplier -> chatAdvisorSupplier.support(context))
                 .map(chatAdvisorSupplier -> chatAdvisorSupplier.getAdvisor(context))
                 .toList();
     }
 
     private ChatClient getChatClient(ChatContext context) throws ChatException {
         return chatClientSuppliers
                 .stream()
                 .filter(chatAdvisorSupplier -> chatAdvisorSupplier.support(context))
                 .map(chatAdvisorSupplier -> chatAdvisorSupplier.getChatClient(context))
                 .findFirst()
                 .orElseThrow(() -> ChatException.of( "unknown how to create the chat client, maybe you need to add a chat client supplier?" ));
     }
 
     private List<ChatTool> getTools(ChatContext context) throws ChatException {
         var tools = chatToolSuppliers
                 .stream()
                 .filter(supplier -> supplier.support(context))
                 .map(supplier -> supplier.getTool(context))
                 .toList();
 
         if (tools.isEmpty()) {
             return tools;
         }
         var toolDescription = tools.stream()
                 .map(chatTool -> String.format( "- %s: %s" , chatTool.getName(), chatTool.getDescription()))
                 .collect(Collectors.joining( "\n" ));
         var systemPrompt = "You will determine what tools to use based on the user's problem." +
                 "Please directly reply the tool names with delimiters ',' and reply empty if no tools is usable " +
                 "Reply example: tool1,tool2." +
                 "The tools are: \n" +
                 toolDescription;
 
         var toolsDecision = getChatClient(context)
                 .prompt()
                 .options(ChatOptions.builder()
                         .model(CHAT_TOOLS_CHOSEN_MODEL)
                         .build())
                 .system(systemPrompt)
                 .messages(context.getUserMessage())
                 .call()
                 .content();
 
         if (StringUtils.isBlank(toolsDecision)) {
             return new ArrayList<>();
         }
 
         var chosen = Arrays.asList(toolsDecision.split( "," ));
 
         tools = tools.stream()
                 .filter(chatTool -> chosen.contains(chatTool.getName()))
                 .toList();
 
         log.info( "tools chosen: {}" , tools.stream().map(ChatTool::getName).collect(Collectors.toSet()));
 
         return tools;
     }
}

  • 首先ChatService注入了所有的ChatToolSupplier,ChatClientSupplier,ChatAdvisorSupplier接口实例;
  • 当处理ChatCommand的时候,组装出ChatContext;
  • 然后调用一系列的get方法读取相关的策略
  • 最后调用大模型client与之交互

  其中getTools方法相对比较复杂,它先列出了所有的本地工具,然后将用户对话和本地工具描述一起交给了大模型,大模型告诉本地应用那一套functions更适合处理这个问题,然后菜返回本地工具集。之所以这么做,是因为(例如)openai官网明确说明,建议一次对话functions不要太多,最好不要超过20个,因为更多的functions意味着更多的token,也意味着更多的处理时间,而且也没有必要,所以我们选择轻量级的模型gpt3.5来处理工具集的选择,在缩小了工具集之后再与大模型交互。

为应用增加RAG功能

  有了ChatAdvisorSupplier这个接口,我们可以轻易的为应用逻辑增加RAG的功能。在Spring-AI(1.0.0-M8)中,RAG作为一个Advisor被实现,期内部原理就是将用户关键字输入到向量数据局进行搜索,搜索到结果之后组成上下文一起发送给大模型。

  我们已经定义了ChatAdvisorSupplier,所以这里实现这个接口,然后判断support的逻辑也很简单,只要开启了内部搜索,并且没有开启外部搜索,则为本次对话增加rag的能力。

  之所以与外部搜索互斥,是这个例子的设计,并没有什么特殊原因,在你自己的应用中需要有自己的启用策略。

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
@Slf4j
@Component
@RequiredArgsConstructor
public class InternalSearchAdvisorSupplier implements ChatAdvisorSupplier {
     private final static int DEFAULT_TOP_K = 3 ;
 
     private final VectorStore vectorStore;
 
     private final static PromptTemplate USER_TEXT_ADVISE = PromptTemplate.builder()
             .template( "" "
                     上下文信息如下,用 --------------------- 包围
                     
                     ---------------------
                     {question_answer_context}
                     ---------------------
                     
                     根据上下文和提供的历史信息(而非先验知识)回复用户问题。如果答案不在上下文中,请告知用户你无法回答该问题。
                     "" ")
             .build();
 
     @Override
     public boolean support(ChatContext context) {
         return context.getChatOption().isEnableInternalSearch()
                 && !context.getChatOption().isEnableExternalSearch();
     }
 
     @Override
     public Advisor getAdvisor(ChatContext context) {
         return QuestionAnswerAdvisor.builder(vectorStore)
                 .searchRequest(
                         SearchRequest.builder()
                                 .topK(NumberUtils.max(context.getChatOption().getRetrieveTopK(), DEFAULT_TOP_K))
                                 .build()
                 )
                 .promptTemplate(USER_TEXT_ADVISE)
                 .build();
     }
 
}

 

为应用增加一组Function Calling

我们写一个示例的Tool,提供function calling的功能

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
@Slf4j
@Component
public class ExampleTool implements ChatTool {
 
     @Override
     public String getName() {
         return "天气信息搜索" ;
     }
 
     @Override
     public String getDescription() {
         return "" "
                 获取天气预报
                 "" ";
     }
 
 
 
     @Tool (description = "get the forecast weather of the specified city and date" )
     public String getForecast( @ToolParam (description = "日期" ) LocalDate date,
                               @ToolParam (description = "城市" ) String city) {
         return "" "
                 - 当前温度: 12 °C \n
                 - 天气状况:雾霾 \n
                 - 体感温度: 12 °C \n
                 - 今天天气:大部分地区多云,最低气温 9 °C \n
                 - 空气质量:轻度污染 ( 51 - 100 ),主要污染物 PM2. 5 75 μg/m³ \n
                 - 风速:轻风 ( 2 - 5 公里/小时),西南风 1 级 \n
                 - 湿度: 78 % \n
                 - 能见度:能见度差 ( 1 - 2 公里), 2 公里 \n
                 - 气压: 1018 hPa \n
                 - 露点: 8 °C \n
                 "" ";
     }
}

再为这个tool写一个supplier

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
@Slf4j
@Component
@RequiredArgsConstructor
public class ExampleToolSupplier implements ChatToolSupplier {
 
     private final ExampleTool exampleTool;
 
     @Override
     public boolean support(ChatContext context) {
         return context.getChatOption().isEnableExampleTools();
     }
 
     @Override
     public ChatTool getTool(ChatContext context) {
         return exampleTool;
     }
}

于是乎,你在没有修改主逻辑的情况下为应用增加了两个功能,这看上去真的很棒!高内聚,低耦合,并且对扩展开放,对修改封闭!

现在,你可以像下面这样,提供更多的扩展能力

 

代码整体结构

 

原创作者: mrye 转载于: https://www.cnblogs.com/mrye/p/18857558
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值