did双重差分法_双重差分方法使用中的问题列举

双重差分法(DID)在政策效果评估中广泛应用,但面临内生性、动态异质性等问题。文章探讨了政策内生性、分组样本异质性、平行趋势检验的挑战,并提出相应修正方法,如实验前测、随机抽样、连续型DID等,以提高评估准确性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

如何客观评估政策和制度绩效,特别是定量考察新政策对经济影响的动态因果检验成为经济学界亟需解决的问题。

20世纪80年代,国外经济学界借鉴自然科学实验效果检验方法,兴起了一种专门评估政策效果的方法——双重差分法(Differences-in-Differences Method,简称DID),由于DID方法思路简洁,模型简单易用,估计方法成熟,在.西方学界被广泛应用于政策效果、制度绩效和项目评价等方面,目前国内DID方法应用也呈现快速增长态势。

但该方法在应用中仍然会出现如内生性、动态异质性等问题,本文将介绍面对这些问题我们应该如何去解决应对。

基于双重差分模型的政策效果评估方法

双重差分方法评估政策效果的基本思想是通过比较受到影响的群体(处理组)和未受到影响的群体(对照组)的差异,评估政策效果。

设定y表示关注的结果变量,组别虚拟变量TREATt= 1或0分别表示对该组样本进行了“处理”或没有;处理时间虚拟变量YEARt=1或0分别表示“处理后”和“处理前”。

假设随机变量之间存在线性关系,双重差分的基本模型一般设定为:

b99bd0d69d990e30e052267685f6f3dc.png

近年来我国双重差分研究的运用进人快速增长期”,但是在方法运用中存在不少问题,根本原因在于忽视了“自然实验”才是双重差分方法的基本前提条件,将一些不合格的政策冲击视为自然实验,导致政策评估结果存在偏差甚至错误。

以下我们列举三个双重差分方法应用过程中容易出现的问题以及修正方法。

1、“政策内生性”和“选择性偏误”

分组不当与时间划分不当导致无法满足随机分组和随机抽样的条件,是造成“政策内生性”和“选择性偏误”的根本原因。

理论上,通过随机分组和随机划分时间,实现平行趋势

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值