signature=d2b89759da50da667ef0add24b5da91d,Dynamic Congruence vs. Progressing Bisimulation for CCS

本文探讨了在CCS(Communicating Sequential Processes)中,弱观测一致性(WeakObservationalCongruence, woc)的局限性,因为它不确保通过woc等价的计算到达的状态仍然保持woc。为解决这一问题,我们引入了动态观察等价性(DynamicObservationalCongruence),这是一种粗粒度的 bisimulation 同时也是 congruence。它适用于处理并发系统中动态(运行时)配置的模拟。此外,我们还定义了进步模拟(ProgressingBisimulation),要求进程在执行显式步骤时彼此模拟。文章提供了动态等价性和进步模拟的代数刻画,并证明两者在CCS代理中相等。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

摘要:

Weak Observational Congruence (woc) defined on CCS agents is not a bisimulation since it does not require two states reached by bisimilar computations of woc agents to be still woc, e.g. \alpha.au.\beta.nil and \alpha.\beta.nil are woc but au.\beta.nil and \beta.nil are not. This fact prevent us from characterizing CCS semantics (when au is considered invisible) as a final algebra, since the semantic function would induce an equivalence over the agents that is both a congruence and a bisimulation. In the paper we introduce a new behavioural equivalence for CCS agents, which is the coarsest among those bisimulations which are also congruences. We call it Dynamic Observational Congruence because it expresses a natural notion of equivalence for concurrent systems required to simulate each other in the presence of dynamic, i.e. run time, (re)configurations. We provide an algebraic characterization of Dynamic Congruence in terms of a universal property of finality. Furthermore we introduce Progressing Bisimulation, which forces processes to simulate each other performing explicit steps. We provide an algebraic characterization of it in terms of finality, two logical characterizations via modal logic in the style of HML and a complete axiomatization for finite agents (consisting of the axioms for Strong Observational Congruence and of two of the three Milner's $au$-laws). Finally, we prove that Dynamic Congruence and Progressing Bisimulation coincide for CCS agents.

展开

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值