利用NPOI库实现Excel数据批量导入数据库的完整指南

本文还有配套的精品资源,点击获取 menu-r.4af5f7ec.gif

简介:在IT领域,自动化地将大量Excel数据批量导入数据库是一项常见任务。NPOI库作为.NET领域的开源工具,提供了处理Microsoft Office文件格式的能力,特别适合于与Excel文件交互。本示例展示了使用NPOI读取Excel并批量导入数据到数据库的流程,包括安装NPOI库、读取数据、数据处理、创建数据库连接、批量插入数据和错误处理等关键步骤。掌握这一技术,能够提升工作效率,优化数据处理流程。 读取Excel中数据批量导入数据库

1. 读取Excel中数据批量导入数据库

在现代软件开发中,数据的导入导出是一个常见的需求,尤其是在处理大量数据的场景下。例如,企业可能需要将员工信息、销售数据等从Excel表格批量导入到数据库中,以便进行进一步的分析和处理。传统的手动录入方法不仅效率低下,还容易出错。因此,自动化这一过程显得尤为重要。

在本章中,我们将探索如何使用编程技术高效、准确地读取Excel文件中的数据,并将其批量导入到数据库中。我们会使用.NET平台上的NPOI库来处理Excel文件,利用它的强大功能读取和写入Excel文件,以及使用ADO.NET或Entity Framework等技术与数据库交互,实现数据的批量导入。

接下来,我们会深入了解NPOI库的基本用法、如何处理不同类型的数据以及如何优化数据读取和导入的过程。我们将通过一系列实用的示例来演示整个工作流程,帮助开发者快速掌握这一技能。通过阅读本章,读者将能获得关于如何实现Excel到数据库的数据批量导入的知识和灵感。

2. NPOI库的介绍与安装

2.1 NPOI库概述

2.1.1 NPOI库的用途和优势

NPOI库是一个用于处理Microsoft Office文档的.NET库,它主要用于读写Excel、Word、PowerPoint等格式的文件,无需安装Microsoft Office就可以进行文件操作。NPOI的优势在于它简化了Office文档的操作,提供了丰富的API来处理复杂的文件结构,同时它也是一个开源项目,社区支持好,更新和维护活跃。

NPOI之所以受到青睐,还因为:

  • 它完全用C#编写,与.NET环境无缝集成。
  • 它支持读写操作,包括文件格式的创建、修改和保存。
  • 它可以处理大型文件而不会占用过多内存资源。
2.1.2 NPOI支持的文件格式

NPOI支持多种Microsoft Office文件格式,包括但不限于:

  • .xlsx (Excel 2007+)
  • .xls (Excel 97-2003)
  • .docx (Word 2007+)
  • .doc (Word 97-2003)
  • .pptx (PowerPoint 2007+)
  • .ppt (PowerPoint 97-2003)

2.2 NPOI库环境搭建

2.2.1 .NET环境中NPOI的安装

要在.NET环境中使用NPOI,首先需要安装NPOI NuGet包。这可以通过命令行或者包管理器UI完成。以下是使用包管理器控制台的安装示例:

Install-Package NPOI

对于较新版本的NPOI,可能存在多个包,例如NPOI.OpenXml4Net需要单独安装,因为它是处理较新格式的必要组件:

Install-Package NPOI.OpenXml4Net
2.2.2 验证NPOI库安装与配置

安装完成后,验证NPOI是否正确安装的最简单方法是在.NET项目中添加一个对NPOI库的引用。在代码中创建一个简单的实例,例如读取Excel文件:

using System;
using NPOI.SS.UserModel;
using NPOI.XSSF.UserModel;
using System.IO;

class Program
{
    static void Main(string[] args)
    {
        IWorkbook workbook = new XSSFWorkbook(); // 尝试创建一个工作簿对象
        Console.WriteLine("NPOI库安装成功!");
    }
}

如果以上代码可以顺利编译并运行,打印出 "NPOI库安装成功!",说明NPOI已经成功安装在项目中。

3. Excel数据读取方法

3.1 工作簿、工作表与单元格操作

在处理Excel文件时,一个工作簿(Workbook)通常包含多个工作表(Worksheet),每个工作表又由成千上万个单元格(Cell)组成。理解这些组件之间的关系对于高效读取数据至关重要。接下来,本章将引导您逐步理解如何加载和读取工作簿,以及如何遍历工作表和单元格数据。

3.1.1 加载和读取工作簿

NPOI库为我们提供了方便的API来加载和读取Excel工作簿。我们通常会使用 FileStream 来打开一个指向Excel文件的流,然后通过 XSSFWorkbook XDocument 类来加载工作簿,这取决于Excel文件的类型(XLSX或XLS)。以下是一个示例代码块,演示了如何加载一个XLSX文件:

// 打开Excel文件的流
using (FileStream file = new FileStream(@"path\to\your\file.xlsx", FileMode.Open, FileAccess.Read))
{
    // 加载工作簿
    IWorkbook workbook = new XSSFWorkbook(file);

    // 工作簿被加载之后可以进行进一步操作,例如读取工作表
    // 假设我们要读取第一个工作表
    ISheet sheet = workbook.GetSheetAt(0);
    // ...
}

代码逻辑解读分析:

  • FileStream 用于打开文件,这里以只读方式打开名为 file.xlsx 的文件。
  • XSSFWorkbook 是用于读取XLSX格式文件的NPOI类,如果是XLS格式的文件,则需要使用 HSSFWorkbook
  • GetSheetAt(0) 方法调用返回了工作簿中的第一个工作表对象。

3.1.2 遍历工作表和单元格数据

一旦我们拥有了工作表对象,下一步就是遍历工作表中的单元格来读取数据。每个单元格可能含有不同的数据类型,如字符串、整数、浮点数或日期等。下面的代码展示了如何遍历工作表中的单元格,并读取它们的值:

// 假设sheet是已经加载的工作表对象
for (int rowIndex = 0; rowIndex <= sheet.LastRowNum; rowIndex++)
{
    // 获取行对象,LastRowNum返回最后一行的索引
    IRow row = sheet.GetRow(rowIndex);
    if (row == null)
        continue; // 如果行不存在,则跳过

    for (int cellIndex = 0; cellIndex < row.LastCellNum; cellIndex++)
    {
        // 获取单元格对象
        ICell cell = row.GetCell(cellIndex);
        if (cell == null)
            continue; // 如果单元格为空,则跳过

        // 读取单元格的值,具体的数据类型需根据实际情况转换
        string value = cell.ToString();
        // ...
    }
}

代码逻辑解读分析:

  • 外层 for 循环遍历工作表中的每一行。 sheet.LastRowNum 提供了最后一行的索引,而 GetRow() 方法返回对应的行对象。
  • 内层 for 循环遍历行中的每个单元格。 row.LastCellNum 提供了当前行中最后一个单元格的索引。
  • 如果单元格不为空,则读取其值。这里使用了 cell.ToString() 来获取字符串表示的值,但实际应用中可能需要根据单元格的数据类型进行适当的转换。

3.2 数据读取技巧与注意事项

3.2.1 高效读取大文件数据的方法

处理大型Excel文件时,应用高效的读取策略至关重要,因为不适当的处理可能会导致内存耗尽或程序运行缓慢。NPOI提供了几种方法来优化大文件的处理。

// 使用SXSSFWorkbook读取大文件
using (FileStream file = new FileStream(@"path\to\your\bigfile.xlsx", FileMode.Open, FileAccess.Read))
{
    var workbook = new SXSSFWorkbook(file);

    // 处理工作簿...

    // 记得在处理完数据后释放内存
    workbook.Dispose();
}

代码逻辑解读分析:

  • SXSSFWorkbook 是NPOI中用于处理大文件的专用类,它通过使用磁盘空间来减少内存的使用。
  • 读取完数据之后,及时调用 Dispose() 方法释放资源是非常必要的,这有助于避免内存泄漏。

3.2.2 处理合并单元格和特殊格式

合并单元格和特殊格式是Excel文件常见的特性,它们可能会对数据读取产生影响。正确处理这些特性不仅可以保证数据的准确性,还可以改善数据处理的效率。

// 遍历工作表中的所有合并区域
foreach (var region in sheet.MergedRegions)
{
    var firstCell = region.FirstCell;
    var lastCell = region.LastCell;

    // 假设我们要读取合并区域的值
    string value = firstCell.ToString();

    // ...
}

代码逻辑解读分析:

  • 通过遍历 sheet.MergedRegions 集合,可以获取到所有合并区域的信息。
  • 对于每一个合并区域,我们可以通过 FirstCell LastCell 属性获取合并区域的起始和结束单元格。
  • 在读取合并单元格值时,通常只需要读取 FirstCell 的值。

处理特殊格式数据

在处理特殊格式数据时,比如货币或百分比等,需要特别注意格式转换。使用 NPOI.SS.UserModel.DataFormatter 可以解决这些问题:

// 创建DataFormatter实例以处理特殊格式
var dataFormatter = new NPOI.SS.UserModel.DataFormatter();

// 获取单元格的格式化字符串表示
string formattedValue = dataFormatter.FormatCellValue(cell);

代码逻辑解读分析:

  • 使用 DataFormatter 类的 FormatCellValue 方法可以将单元格的原始值转换为带有其格式的字符串表示形式。
  • 这对于确保数据在导入数据库或进行处理时保持正确的格式非常有用。

综上,本章节探讨了Excel数据读取的多种方法,从基本的工作簿、工作表和单元格操作到优化大型文件处理的技巧,以及合并单元格和特殊格式数据的处理。掌握这些方法和技巧将大大提高数据处理的效率和准确性。

4. 数据类型转换和处理

4.1 数据类型匹配与转换

4.1.1 Excel数据类型与数据库类型的对应

在将Excel数据导入数据库的过程中,数据类型匹配是一个重要步骤。Excel和数据库中支持的数据类型不尽相同,正确地进行类型转换是避免数据错误的关键。例如,Excel中的数值默认为双精度型,而在数据库中可能需要区分整型、浮点型、货币型等。下表展示了Excel数据类型与常见数据库数据类型的基本对应关系:

| Excel数据类型 | 数据库数据类型 | |---------------|-----------------| | 文本(Text) | VARCHAR/NVARCHAR | | 数值(Number)| INT, FLOAT, DECIMAL | | 日期和时间(Date & Time) | DATETIME, DATE, TIME | | 布尔值(Boolean)| TINYINT, BIT | | 错误值/空白(Error/Blank) | NULL |

代码块展示

下面的代码展示了如何使用NPOI读取Excel中的数值,并将其转换为数据库支持的数据类型。

// 假设我们有一个NPOI的Cell对象,代表Excel中的一个单元格
Cell cell = ...;

// 检查单元格类型,并进行数据类型转换
switch (cell.CellType)
{
    case CellType.Numeric:
        if (DateUtil.IsCellDateFormatted(cell))
        {
            // Excel中日期时间类型的处理
            DateTime dateTime = cell.DateCellValue;
            // 这里转换为数据库支持的日期时间类型
            // 例如使用sprintf进行格式化,假设目标数据库支持的日期格式为 'yyyy-MM-dd HH:mm:ss'
            string dbDateTime = dateTime.ToString("yyyy-MM-dd HH:mm:ss");
        }
        else
        {
            // 数值类型的处理
            double numericValue = cell.NumericCellValue;
            // 转换为整型或浮点型取决于单元格内容
            if (numericValue % 1 == 0)
            {
                int intValue = (int)numericValue;
            }
            else
            {
                float floatValue = (float)numericValue;
            }
        }
        break;
    case CellType.String:
        string stringValue = cell.StringCellValue;
        // 转换为数据库的VARCHAR或NVARCHAR类型
        // 注意:可能需要进行字符串长度的校验和截断
        string dbStringValue = stringValue.Substring(0, Math.Min(stringValue.Length, 255));
        break;
}

4.1.2 字符串、日期和数字的转换规则

在转换过程中,还需注意以下几点: - 字符串转换 :如果Excel单元格内容为文本,一般情况下直接转换为数据库中的字符串类型即可。但需留意长度是否超出数据库字段的最大限制。 - 日期转换 :Excel中的日期时间类型需要转换为数据库支持的日期时间格式。对于日期的转换,需要注意时区问题以及时间戳的转换。 - 数字转换 :数值类型在转换时需要注意小数点和精度,确保转换后的数据不会丢失精度或四舍五入到错误的数值。

代码逻辑解释
  1. 通过检查单元格的类型来决定如何处理。NPOI的 CellType 属性提供了这样的信息。
  2. 如果单元格是数字类型,使用 DateUtil.IsCellDateFormatted 方法判断是否为日期时间类型。如果是日期类型,应转换为数据库的日期时间格式。
  3. 对于数值类型的单元格,使用 NumericCellValue 属性读取数值。通过判断小数部分是否存在来确定是否转换为整型或浮点型。
  4. 字符串类型的处理比较简单,直接读取文本并根据需要进行长度截断处理。

4.2 数据清洗与预处理

4.2.1 去除无效数据和空白行

在数据导入之前,需要对数据进行预处理,以确保只有有效和准确的数据被写入数据库。这包括去除空白行和格式错误的数据。以下代码块演示了如何在读取Excel数据时去除空白行:

// 假设sheet代表Excel中的一个工作表
IList<string[]> rows = new List<string[]>();
bool headerRowRead = false;

// 遍历工作表中的所有行
for (int rowIndex = 0; rowIndex < sheet.LastRowNum; rowIndex++)
{
    IRow row = sheet.GetRow(rowIndex);
    // 跳过未初始化的行
    if (row == null) continue;

    // 检查是否为标题行
    if (!headerRowRead)
    {
        // 标题行处理逻辑...
        headerRowRead = true;
        continue;
    }

    // 检查行是否为空白,即没有任何单元格数据
    bool rowIsEmpty = true;
    for (int cellIndex = 0; cellIndex < row.LastCellNum; cellIndex++)
    {
        ICell cell = row.GetCell(cellIndex, RowGetCellPolicy.OMITTED);
        if (cell != null && cell.CellType != CellType.Blank)
        {
            rowIsEmpty = false;
            break;
        }
    }

    // 如果行不为空白,则添加到结果列表中
    if (!rowIsEmpty)
    {
        string[] rowData = new string[row.LastCellNum];
        int cellCount = 0;
        foreach (ICell cell in row)
        {
            // 这里简化处理,直接将非空单元格的值添加到行数据数组中
            rowData[cellCount++] = (cell != null && cell.CellType != CellType.Blank) ? cell.ToString() : null;
        }
        rows.Add(rowData);
    }
}
代码逻辑解释
  1. 定义一个列表 rows 来保存处理后的行数据。
  2. 使用一个布尔变量 headerRowRead 来标记是否读取过标题行。
  3. 遍历工作表的每一行,并使用 GetRow 方法获取行对象。
  4. 如果遇到未初始化的行,使用 continue 跳过。
  5. 检查是否为标题行,如果是,则执行相应的处理逻辑。
  6. 对于非标题行,检查是否为空白行。空白行的定义是:行中的所有单元格都是空的。
  7. 如果行不为空白,则遍历该行的每个单元格,只有非空单元格的值会被添加到 rowData 数组中。
  8. 将处理好的行数据添加到 rows 列表中。

4.2.2 正则表达式在数据预处理中的应用

数据预处理中一个重要的环节是确保数据的格式正确,比如电话号码、电子邮件地址、身份证号码等都需要符合一定的格式。在NPOI中,可以使用正则表达式来验证数据格式,并且在必要时进行修正。

代码块展示

下面的代码演示了如何使用正则表达式来验证和格式化一个电话号码:

using System.Text.RegularExpressions;

// 假设我们有一个包含电话号码的字符串变量phoneNumber
string phoneNumber = "1234567890";

// 定义一个正则表达式模式,用于匹配10位数字的电话号码
Regex phonePattern = new Regex(@"^(\d{3})-(\d{3})-(\d{4})$");

// 检查电话号码是否符合预期格式
if (phonePattern.Match(phoneNumber).Success)
{
    // 提取分组内容并重新格式化电话号码
    Match match = phonePattern.Match(phoneNumber);
    string areaCode = match.Groups[1].Value;
    string exchangeCode = match.Groups[2].Value;
    string subscriberNumber = match.Groups[3].Value;
    string formattedPhoneNumber = $"({areaCode}) {exchangeCode}-{subscriberNumber}";
}
else
{
    // 如果电话号码不符合格式,可以进行修正或记录错误
    Console.WriteLine("Invalid phone number format.");
}
参数说明
  • 正则表达式模式 @"^(\d{3})-(\d{3})-(\d{4})$" 定义了三个数字组,分别对应区号、交换码和订阅者号。
  • Match.Success 属性用来检查电话号码是否符合正则表达式定义的格式。
  • 如果电话号码格式正确,使用 Match.Groups 来访问每个数字组,并根据需要重新格式化电话号码。
  • 如果电话号码不符合格式,可以采取进一步的操作,比如修正格式错误或记录错误信息。

通过使用正则表达式进行数据格式的验证,可以保证数据的整洁性和一致性,从而提高数据质量。在处理大规模数据集时,正则表达式可以作为自动化数据清洗的有力工具。

5. 数据库连接建立与批量操作

5.1 数据库连接管理

数据库连接管理是数据导入过程中不可或缺的一部分,良好的连接管理能够确保数据的快速传输并且维护系统的稳定性。本节将详细介绍连接字符串的配置和使用方法,以及如何进行安全的连接池管理。

5.1.1 连接字符串的配置和使用

连接字符串(ConnectionString)是用于建立数据库连接的一串参数配置,包括服务器地址、登录凭证、数据库名称等。一个典型的连接字符串如下所示:

Server=myServerAddress;Database=myDataBase;User Id=myUsername;Password=myPassword;

在.NET环境中,使用 System.Data.SqlClient 命名空间下的 SqlConnection 类来创建数据库连接。代码示例如下:

using System.Data.SqlClient;

// 创建连接字符串
string connectionString = "Server=myServerAddress;Database=myDataBase;User Id=myUsername;Password=myPassword;";
using (SqlConnection connection = new SqlConnection(connectionString))
{
    connection.Open(); // 打开连接
    // 数据操作逻辑
}

在上述代码中, connectionString 包含了所有连接必要的参数。 using 语句确保了连接在使用完毕后能被正确关闭。

5.1.2 安全的连接池管理技巧

连接池(Connection Pooling)是数据库连接管理中的一个重要技术,它可以缓存一定数量的数据库连接以供复用,从而提高性能和资源利用率。以下是一些提高连接池安全性的技巧:

  • 预分配连接: 通过设置 min pool size max pool size 来控制连接池中的最小和最大连接数。
  • 维护连接活跃: 使用 Connection Pool 时,应该定期检查连接的有效性,避免使用无效的连接。
  • 异常处理: 在代码中添加异常处理逻辑来处理连接池故障。
  • 超时设置: 明确设置连接的超时时间,防止程序因为长时间等待无效连接而阻塞。

5.2 SQL批量插入与事务处理

5.2.1 批量插入SQL语句的构造

批量插入数据到数据库是一种高效的方法,可以显著提高数据插入效率。下面是一个使用 SqlBulkCopy 的示例:

using System.Data.SqlClient;
using System.Data;

// 假设已经有一个有效的SqlConnection对象connection
using (SqlBulkCopy bulkCopy = new SqlBulkCopy(connection))
{
    bulkCopy.DestinationTableName = "MyTable";
    bulkCopy.WriteToServer(myDataTable);
}

在上述代码中, SqlBulkCopy 类被用来执行批量插入操作。需要注意的是, myDataTable 是一个包含要插入数据的 DataTable 实例。

5.2.2 事务控制在数据导入中的应用

事务(Transaction)是数据库管理系统执行过程中的一个逻辑单位,保证了数据的完整性和一致性。在进行批量操作时,使用事务可以确保要么所有操作都成功,要么全部不执行。

using System.Data.SqlClient;

// 创建连接字符串
string connectionString = "Server=myServerAddress;Database=myDataBase;User Id=myUsername;Password=myPassword;";
using (SqlConnection connection = new SqlConnection(connectionString))
{
    connection.Open();
    using (SqlTransaction transaction = connection.BeginTransaction())
    {
        try
        {
            string insertCommand = "INSERT INTO MyTable (Column1, Column2) VALUES (@value1, @value2)";
            using (SqlCommand command = new SqlCommand(insertCommand, connection, transaction))
            {
                // 添加参数化查询防止SQL注入
                command.Parameters.Add("@value1", SqlDbType.VarChar);
                command.Parameters.Add("@value2", SqlDbType.Int);

                // 循环插入数据
                foreach (DataRow row in myDataTable.Rows)
                {
                    command.Parameters["@value1"].Value = row["Column1"];
                    command.Parameters["@value2"].Value = row["Column2"];
                    command.ExecuteNonQuery();
                }
            }
            transaction.Commit(); // 提交事务
        }
        catch (Exception)
        {
            transaction.Rollback(); // 回滚事务
            throw; // 抛出异常
        }
    }
}

在上述代码示例中,所有插入操作都包裹在一个事务块中。如果任何一个插入操作失败,整个事务就会被回滚,从而确保数据的一致性和完整性。通过这种方式,即使在批量操作中遇到了异常,也不会对数据库造成不一致的状态。

通过本节的介绍,读者应该能够掌握如何在.NET环境中配置和使用数据库连接,并能够有效地利用SQL批量插入和事务处理来提高数据导入的效率和安全性。

6. 错误处理和日志记录

6.1 错误捕获与异常处理

6.1.1 常见错误类型与处理策略

在将Excel数据导入数据库的过程中,我们可能会遇到各种异常情况。常见的错误类型包括但不限于路径错误、文件格式不支持、文件损坏、数据类型不匹配、数据库连接失败等。

对于路径错误,通常是因为文件路径未正确指定或文件不存在,应当使用文件路径的有效性检查来避免。

文件格式不支持或文件损坏的情况下,应当检查文件扩展名和内容,确保文件是预期格式并且未损坏。

数据类型不匹配时,需要进行数据类型转换,并在转换失败时提供清晰的错误信息。

数据库连接失败可能是由于连接字符串错误、数据库服务不可用或网络问题导致的,应当在捕获异常后尝试重连,并记录详细的错误日志以供分析。

6.1.2 异常信息的提取与记录

异常处理应包含错误信息的提取和记录,以便于后续的调试和优化。在.NET中,我们可以使用try-catch块来捕获异常。以下是一个简单的示例:

try
{
    // 尝试执行数据库操作或其他代码
}
catch (IOException e)
{
    // 特定异常类型处理
    LogError("IO Exception: " + e.Message);
}
catch (SQLException e)
{
    // 另一种特定异常类型处理
    LogError("SQL Exception: " + e.Message);
}
catch (Exception e)
{
    // 其他所有异常
    LogError("General Exception: " + e.Message);
}

void LogError(string message)
{
    // 记录日志到文件或数据库
    Console.WriteLine(message); // 示例中仅输出到控制台
}

6.2 日志记录机制的实现

6.2.1 日志级别与格式化输出

日志记录是任何应用程序的重要组成部分,它帮助开发者追踪程序运行时发生的问题。常见日志级别包括:DEBUG, INFO, WARN, ERROR, FATAL等。根据日志的级别,我们可以决定日志的输出方式和存储策略。

以下是一个简单的日志记录格式化输出示例:

enum LogLevel
{
    DEBUG,
    INFO,
    WARN,
    ERROR,
    FATAL
}

void LogMessage(LogLevel level, string message)
{
    // 这里可以添加格式化字符串
    string formattedMessage = $"{DateTime.Now} [{level}] {message}";
    switch (level)
    {
        case LogLevel.DEBUG:
            // 输出到调试输出
            Debug.WriteLine(formattedMessage);
            break;
        case LogLevel.INFO:
            // 输出到标准日志文件
            Console.WriteLine(formattedMessage);
            break;
        // 其他日志级别处理...
    }
}

6.2.2 日志文件的轮转和归档

随着应用程序运行时间的增长,日志文件会持续增长,可能会占用大量磁盘空间。因此,通常需要实现日志轮转(日志分割和压缩)和归档机制。

下面是一个简单日志轮转的伪代码:

void RotateLogs()
{
    string logFilePath = "app_log.txt";
    string archivePath = "app_log_archive.txt";
    // 检查文件是否达到某个大小阈值
    if (new FileInfo(logFilePath).Length > MAX_SIZE)
    {
        // 文件重命名进行压缩归档
        File.Move(logFilePath, archivePath);
        // 可以进一步压缩archivePath文件
    }
}

日志轮转可以通过定时任务或者日志库自带的配置来实现。这样不仅确保了日志信息的完整性,也帮助维护了文件系统的健康。

在实现错误处理和日志记录时,考虑到应用程序的健壮性和数据的安全性至关重要,因为这直接关系到程序运行的稳定性以及后期问题的排查效率。

本文还有配套的精品资源,点击获取 menu-r.4af5f7ec.gif

简介:在IT领域,自动化地将大量Excel数据批量导入数据库是一项常见任务。NPOI库作为.NET领域的开源工具,提供了处理Microsoft Office文件格式的能力,特别适合于与Excel文件交互。本示例展示了使用NPOI读取Excel并批量导入数据到数据库的流程,包括安装NPOI库、读取数据、数据处理、创建数据库连接、批量插入数据和错误处理等关键步骤。掌握这一技术,能够提升工作效率,优化数据处理流程。

本文还有配套的精品资源,点击获取 menu-r.4af5f7ec.gif

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值