
工欲善其事,必先利其器
用Python进行数据分析需要安装的较为重要和常用的第三方扩展库有:Numpy、Pandas、SciPy、Matplotlib。
我不想模糊主线,所以这一节就讲Pandas的安装,待后续课程需要其他包配合时,我再对用到包的安装进行讲解。
安装Anaconda
我在Python课堂中讲过Anaconda的安装,Anaconda中不仅仅包含了Jupyter,还包含了pandas、Numpy、Matplotlib等等第三方工具包。
Anaconda的安装我就不再复述了,感兴趣的同学可以看我的Python课堂中的我就不告诉你:第003篇:安装Jupyter Notebook这节课,里面对Anaconda的安装进行了讲解。也可以参考Anaconda官网的安装指南Installation - Anaconda documentation进行安装。
通过Conda安装
Conda是Anaconda发行版所基于的软件包管理器 。它是一个跨平台且与语言无关的程序包管理器(你可以把它看作是pip之类的东西)。
Conda允许您创建一个最小的自包含Python安装,然后使用 Conda命令安装其他软件包。
这样做的好处是你不用像安装Anaconda一样一次性安装上百个外部包(你可能永远用不上),在你电脑硬盘空间有限的时候,我建议你采用这种方式安装工具包。
首先,您需要安装Conda,然后下载并运行Miniconda 会为您完成此操作。可以在这里找到安装程序Miniconda - Conda documentation。
下一步是创建一个新的conda环境。康达环境就像virtualenv一样,它允许您指定特定版本的Python和一组库。从终端窗口运行以下命令:

从pip安装

安装页面是这样的:

怎么检查是否安装正确呢?只要在终端窗口启动"ipython",注意python前面有个i,输入导入语句import pandas,没出现错误就代表pandas安装成功了。

在Jupyter是这样的:

运行几行代码试试:

Jupyter的页面:

OK,这样pandas就安装成功了,从下节课开始,我们将正式进入pandas的课程。