java opencv 数字识别,使用opencv进行数字识别

本文介绍了如何使用OpenCV库和KNN算法在Java中进行数字识别。首先,通过图像预处理步骤,包括灰度图和二值图的转换,去除噪音。接着,利用轮廓检测找到数字所在的区域。最后,使用KNN分类器对检测到的数字轮廓进行识别,确保结果的准确性。实验结果显示,该方法能够有效地识别数字。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

最终的效果图是这样的:

result.resized.png

图中的一个小的窗口中为resize之后的所有找到的图片的列表,在这个case中,有三个数字。

数字识别即将图片中的数字通过计算机算法识别为文本。如果要从头写一个识别器,可能需要很多的实践,花费很大的精力,而且还需要有良好的数学功底才能完成,不过使用opencv提供的丰富的API和算法实现,可以比较容易的做到,而且也可以得到比较高的精确率。

数字识别是模式识别中的一个特例,我这里要讨论的是一个比较简单的实现,基于最简单也最容易理解的KNN算法(请参看之前的一篇文章)。

数字识别和其他的所有计算机视觉相关的应用都会分为两个步骤:ROI抽取和识别。

1. ROI抽取即将感兴趣的区域从原始图像中分离初来,这个步骤包括二值化,噪点的消除等

2. 识别即通过一些分类器将第一步中的结果进行分类,事实上属于机器学习的一个典型应用

图像预处理

原始图片中会有大量与目标无关的信息,比如人脸检测中,背景中往往有诸如桌椅,墙壁上的画,或者在户外的树木,动物等等,这些与目标无关的信息被称为噪音或者噪点,应该在进行分类之前通过一些特定的步骤来消除,不但可以减少计算量,而且还可以提高准确率。

865.origin.png

灰度图

通常的彩色图形由3个(RGB)或者4个(RGBA)通道组成,在计算机看来,一个彩色的图片是由3/4个矩阵组成,每个矩阵中包含若干个点(比如1024x768),如果每个通道都参与运算的话,会引入太多的计算量,因此通常的做法是将彩色图像转换为灰度图,在opencv中,这一步非常容易:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值