https://www.xin3721.com/eschool/pythonxin3721/
截至到目前为止,其实我们已经接触了不少的python内置函数,而map函数也是其中之一,map函数是根据指定函数对指定序列做映射,在开发中使用map函数也是有效提高程序运行效率的办法之一.
一.语法定义
'''function:函数名
iterable:一个序列或者多个序列,实际上这就是function对应的实参'''map(function, iterable, ...)
参数:
function:函数名
iterable:一个序列或者多个序列,实际上这就是function对应的实参
返回值:
返回值是迭代器,注意返回的结果只能迭代一次,如果需要多次使用请提前保存结果并处理。
二.实战练习
1.使用map函数
#!usr/bin/env python#-*- coding:utf-8 _*-
"""@Author:何以解忧
@Blog(个人博客地址): shuopython.com
@WeChat Official Account(微信公众号):猿说python
@Github:www.github.com
@File:python_map.py
@Time:2019/10/7 19:48
@Motto:不积跬步无以至千里,不积小流无以成江海,程序人生的精彩需要坚持不懈地积累!"""
deffunc1(x):#对序列中的每一个元素乘以10并返回
return x*10
'''map() 会根据提供的函数对指定序列做映射。
序列中的每一个元素调用 func1 函数,返回新列表。'''x= map(func1,range(0,10))print(list(x))#map函数返回的迭代器只能迭代一次,迭代之后会自动清空
print(list(x))print("***"*20)#将map函数返回的迭代器保存转为list,可以多次使用
y = list(map(func1,range(0,10)))print(y)print(y)
输出结果:
[0, 10, 20, 30, 40, 50, 60, 70, 80, 90]
[]************************************************************[0,10, 20, 30, 40, 50, 60, 70, 80, 90]
[0,10, 20, 30, 40, 50, 60, 70, 80, 90]
2.map函数配合匿名函数一起使用
#map函数配合匿名函数使用
x = list(map(lambda a:a*10,range(0,10))) #序列中的每个元素乘以10
print(x)#map函数配合匿名函数使用,匿名函数有两个参数,所以map传参数应该也是两个序列
y = list(map(lambda a,b:a+b,[1,2,3,5,6,7],[10,20,30,50,60,70])) #两个序列相加
print(y)
输出结果:
[0, 10, 20, 30, 40, 50, 60, 70, 80, 90]
[11, 22, 33, 55, 66, 77]
注意:如果map()函数中的函数是多个参数,那么map传参的时候也应该传递多个序列.
三.效率对比
对比以下效率,向列表中存入一千万条数据,比较下耗时情况:
importtime
list1=list()#普通for循环
start =time.clock()for i in range(0,10000000):
list1.append(i)print("普通for循环耗时:",time.clock() -start)#列表推导式
list1.clear()
start=time.clock()
list1= [i for i in range(0,10000000)]print("列表推导式循环耗时:",time.clock() -start)#map映射函数
list1.clear()
start=time.clock()
list1= list(map(lambda x:x,range(0,10000000)))print("map映射函数耗时:",time.clock() - start)
输出结果:
普通for循环耗时: 1.1869014999999998列表推导式循环耗时:0.5339119999999999map映射函数耗时:0.9047431000000001
根据测试结果看来:列表推导式效率 > map映射函数 > 普通for循环
四.重点总结
1.map函数的参数是由函数和一个序列或者多个序列构成;
2.map函数处理的结果是迭代器,而且只能迭代一次,如果需要多次使用,请提前保存;