lda主题模型困惑度_困惑度(perplexity)的基本概念及多种模型下的计算(N-gram, 主题模型, 神经网络)...

本文详细介绍了困惑度在N-gram、主题模型(如LDA)和神经网络(如RNN/LSTM)中的计算方法,探讨了困惑度作为评价语言模型和文本生成任务指标的原理,以及在GPT/BERT/XLnet等最新模型中的应用。通过困惑度,我们可以评估模型对句子的概率预测能力,理解模型的困惑度有助于优化模型性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

358ad13007f831f121dabdf5a7827ba8.png

让人困惑的困惑度

发现网络上流传的关于困惑度(perplexity)大多数都是利用了N-gram或者主题模型的例子来阐述的。但是现在这个年代来学习这个指标的人多半都是想研究神经网络的,而两者对困惑度的计算方法又很不同,这就不能不让人对“困惑度”感到“困惑”了。本人虽然才疏学浅,还是斗胆在这里尝试写一篇文章,试图用简洁的方式来梳理清楚其中的困惑。

困惑度的基本定义

首先,困惑度是用来评价语言模型好坏的指标。语言模型是衡量句子好坏的模型,本质上是计算句子的概率:

对于句子s(词语w的序列):

b184947b2494b0dfd56243b7188e4546.png

它的概率为:【公式1】

7030ffa2c73d34514d3734dda9930431.png
公式1

困惑度与测试集上的句子概率相关,其基本思想是:给测试集的句子赋予较

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值