python预测比赛_快手活跃用户预测竞赛的第一名解决方案

这篇博客探讨了在快手活跃用户预测问题中,使用RNN(循环神经网络)的两种结构:Many2One和Many2Many。Many2One方法需要大量滑窗操作,训练成本高,而Many2Many则能充分利用监督信息,简化训练过程。文中还提到了输入特征,如登陆状态、观看次数等,并指出RNN对于原始行为序列的处理优势。此外,采用了动态RNN处理变长序列,并利用余弦退火快照集成提高模型性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

作者按:由于比赛时间仓促,这份代码中有些地方写的并不规范。更规范的tensorflow RNN构建,可以参考作者的另外一个项目tenosrflow-RNN-toolkit,该项目使用更高程度抽象的building block构建RNN,同时不失灵活性。

赛题回顾

这是一个活跃用户预测问题。给定快手用户注册、登陆、视频观看与发布、互动的记录,预测未来7天活跃用户。

详情可参见比赛页面。

RNN: Many2One vs Many2Many

使用RNN,一般地会想到如下解决方案:以几天内的用户行为序列为输入,以未来七天该用户是否活跃为标签,标注该序列。这是一种Many2One的解决方案。

Many2One.png

为了充分利用数据,需要对训练数据做大量的滑窗,以实现数据增广,计算成本高。另外,每个序列只有一个标签,梯度难以传导,导致训练困难。相反的,我们可以考虑Many2Many结构,即每个输入都对应输出之后7天是否活跃,充分利用监督信息,减轻梯度传到负担,使训练更加容易。

Many2Many.png

Many2One和Many2Many结构的简单对比如下。

Many2One

Many2Many

无需滑窗

充分利用监督信息

变长序列

输入序列

相比xgboost的历史统计量为特征的解决方案,RNN无需对输入序列做过多处理,对各类行为序列直接输入即可。简单列表如下:

当天是否登陆(0/1)

当天观看次数(加1取对数)

分action_type行为记录数(加1取对数)

分page行为记录数(加1取对数)

Intercept

另外,在输出层直接做一个intercept拼接,将日期、device_type、register_type one-hot后输入。低频类别可归为一类。

Variable Length

因为序列是变长的,采用dynamic-RNN,每个batch中取相同长度的序列,不同batch长度不同,每次随机取某一长度的batch。

余弦退火快照集成

采用余弦退火快照集成,可以以极低的成本获得大量有差异的局部最优,最后再进行融合,能获得显著的提升。

方案是为解决特定问题或达成特定目标而制定的一系列计划或步骤。它的作用是提供一种系统性的方法,以有效地应对挑战、优化流程或实现目标。以下是方案的主要作用: 问题解决: 方案的核心目标是解决问题。通过系统性的规划和执行,方案能够分析问题的根本原因,提供可行的解决方案,并引导实施过程,确保问题得到合理解决。 目标达成: 方案通常与明确的目标相关联,它提供了一种达成这些目标的计划。无论是企业战略、项目管理还是个人发展,方案的制定都有助于明确目标并提供达成目标的路径。 资源优化: 方案在设计时考虑了可用资源,以最大化其效用。通过明智的资源分配,方案可以在有限的资源条件下实现最大的效益,提高效率并减少浪费。 风险管理: 方案通常会对潜在的风险进行评估,并制定相应的风险管理策略。这有助于减轻潜在问题的影响,提高方案的可行性和可持续性。 决策支持: 方案提供了决策者所需的信息和数据,以便做出明智的决策。这种数据驱动的方法有助于减少不确定性,提高决策的准确性。 团队协作: 复杂的问题通常需要多个人的协同努力。方案提供了一个共同的框架,帮助团队成员理解各自的职责和任务,促进协作并确保整个团队朝着共同的目标努力。 监控与评估: 方案通常包括监控和评估的机制,以确保实施的有效性。通过定期的评估,可以及时调整方案,以适应变化的环境或新的挑战。 总体而言,方案的作用在于提供一种有序、有计划的方法,以解决问题、实现目标,并在实施过程中最大化资源利用和风险管理。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值