android 转换图片格式,Android 处理图片( 图像二值化、锐化、转换格式)

package net.wealthgod.client.center.ocr;

import java.awt.Graphics2D;

import java.awt.color.ColorSpace;

import java.awt.geom.AffineTransform;

import java.awt.image.AffineTransformOp;

import java.awt.image.BufferedImage;

import java.awt.image.ColorConvertOp;

import java.awt.image.ColorModel;

import java.awt.image.MemoryImageSource;

import java.awt.image.PixelGrabber;

public class ImageFilter

{

private BufferedImage image;

private int iw, ih;

private int[] pixels;

public ImageFilter(BufferedImage image)

{

this.image = image;

iw = image.getWidth();

ih = image.getHeight();

pixels = new int[iw * ih];

}

/** 图像二值化 */

public BufferedImage changeGrey()

{

PixelGrabber pg = new PixelGrabber(image.getSource(), 0, 0, iw, ih,

pixels, 0, iw);

try

{

pg.grabPixels();

} catch (InterruptedException e)

{

e.printStackTrace();

}

// 设定二值化的域值,默认值为100

int grey = 100;

// 对图像进行二值化处理,Alpha值保持不变

ColorModel cm = ColorModel.getRGBdefault();

for (int i = 0; i < iw * ih; i++)

{

int red, green, blue;

int alpha = cm.getAlpha(pixels[i]);

if (cm.getRed(pixels[i]) > grey)

{

red = 255;

} else

{

red = 0;

}

if (cm.getGreen(pixels[i]) > grey)

{

green = 255;

} else

{

green = 0;

}

if (cm.getBlue(pixels[i]) > grey)

{

blue = 255;

} else

{

blue = 0;

}

pixels[i] = alpha << 24 | red << 16 | green << 8 | blue;

}

// 将数组中的象素产生一个图像

return ImageIOHelper

.imageProducerToBufferedImage(new MemoryImageSource(iw, ih,

pixels, 0, iw));

}

/** 提升清晰度,进行锐化 */

public BufferedImage sharp()

{

PixelGrabber pg = new PixelGrabber(image.getSource(), 0, 0, iw, ih,

pixels, 0, iw);

try

{

pg.grabPixels();

} catch (InterruptedException e)

{

e.printStackTrace();

}

// 象素的中间变量

int tempPixels[] = new int[iw * ih];

for (int i = 0; i < iw * ih; i++)

{

tempPixels[i] = pixels[i];

}

// 对图像进行尖锐化处理,Alpha值保持不变

ColorModel cm = ColorModel.getRGBdefault();

for (int i = 1; i < ih - 1; i++)

{

for (int j = 1; j < iw - 1; j++)

{

int alpha = cm.getAlpha(pixels[i * iw + j]);

// 对图像进行尖锐化

int red6 = cm.getRed(pixels[i * iw + j + 1]);

int red5 = cm.getRed(pixels[i * iw + j]);

int red8 = cm.getRed(pixels[(i + 1) * iw + j]);

int sharpRed = Math.abs(red6 - red5) + Math.abs(red8 - red5);

int green5 = cm.getGreen(pixels[i * iw + j]);

int green6 = cm.getGreen(pixels[i * iw + j + 1]);

int green8 = cm.getGreen(pixels[(i + 1) * iw + j]);

int sharpGreen = Math.abs(green6 - green5)

+ Math.abs(green8 - green5);

int blue5 = cm.getBlue(pixels[i * iw + j]);

int blue6 = cm.getBlue(pixels[i * iw + j + 1]);

int blue8 = cm.getBlue(pixels[(i + 1) * iw + j]);

int sharpBlue = Math.abs(blue6 - blue5)

+ Math.abs(blue8 - blue5);

if (sharpRed > 255)

{

sharpRed = 255;

}

if (sharpGreen > 255)

{

sharpGreen = 255;

}

if (sharpBlue > 255)

{

sharpBlue = 255;

}

tempPixels[i * iw + j] = alpha << 24 | sharpRed << 16

| sharpGreen << 8 | sharpBlue;

}

}

// 将数组中的象素产生一个图像

return ImageIOHelper

.imageProducerToBufferedImage(new MemoryImageSource(iw, ih,

tempPixels, 0, iw));

}

/** 中值滤波 */

public BufferedImage median()

{

PixelGrabber pg = new PixelGrabber(image.getSource(), 0, 0, iw, ih,

pixels, 0, iw);

try

{

pg.grabPixels();

} catch (InterruptedException e)

{

e.printStackTrace();

}

// 对图像进行中值滤波,Alpha值保持不变

ColorModel cm = ColorModel.getRGBdefault();

for (int i = 1; i < ih - 1; i++)

{

for (int j = 1; j < iw - 1; j++)

{

int red, green, blue;

int alpha = cm.getAlpha(pixels[i * iw + j]);

// int red2 = cm.getRed(pixels[(i - 1) * iw + j]);

int red4 = cm.getRed(pixels[i * iw + j - 1]);

int red5 = cm.getRed(pixels[i * iw + j]);

int red6 = cm.getRed(pixels[i * iw + j + 1]);

// int red8 = cm.getRed(pixels[(i + 1) * iw + j]);

// 水平方向进行中值滤波

if (red4 >= red5)

{

if (red5 >= red6)

{

red = red5;

} else

{

if (red4 >= red6)

{

red = red6;

} else

{

red = red4;

}

}

} else

{

if (red4 > red6)

{

red = red4;

} else

{

if (red5 > red6)

{

red = red6;

} else

{

red = red5;

}

}

}

// int green2 = cm.getGreen(pixels[(i - 1) * iw + j]);

int green4 = cm.getGreen(pixels[i * iw + j - 1]);

int green5 = cm.getGreen(pixels[i * iw + j]);

int green6 = cm.getGreen(pixels[i * iw + j + 1]);

// int green8 = cm.getGreen(pixels[(i + 1) * iw + j]);

// 水平方向进行中值滤波

if (green4 >= green5)

{

if (green5 >= green6)

{

green = green5;

} else

{

if (green4 >= green6)

{

green = green6;

} else

{

green = green4;

}

}

} else

{

if (green4 > green6)

{

green = green4;

} else

{

if (green5 > green6)

{

green = green6;

} else

{

green = green5;

}

}

}

// int blue2 = cm.getBlue(pixels[(i - 1) * iw + j]);

int blue4 = cm.getBlue(pixels[i * iw + j - 1]);

int blue5 = cm.getBlue(pixels[i * iw + j]);

int blue6 = cm.getBlue(pixels[i * iw + j + 1]);

// int blue8 = cm.getBlue(pixels[(i + 1) * iw + j]);

// 水平方向进行中值滤波

if (blue4 >= blue5)

{

if (blue5 >= blue6)

{

blue = blue5;

} else

{

if (blue4 >= blue6)

{

blue = blue6;

} else

{

blue = blue4;

}

}

} else

{

if (blue4 > blue6)

{

blue = blue4;

} else

{

if (blue5 > blue6)

{

blue = blue6;

} else

{

blue = blue5;

}

}

}

pixels[i * iw + j] = alpha << 24 | red << 16 | green << 8

| blue;

}

}

// 将数组中的象素产生一个图像

return ImageIOHelper

.imageProducerToBufferedImage(new MemoryImageSource(iw, ih,

pixels, 0, iw));

}

/** 线性灰度变换 */

public BufferedImage lineGrey()

{

PixelGrabber pg = new PixelGrabber(image.getSource(), 0, 0, iw, ih,

pixels, 0, iw);

try

{

pg.grabPixels();

} catch (InterruptedException e)

{

e.printStackTrace();

}

// 对图像进行进行线性拉伸,Alpha值保持不变

ColorModel cm = ColorModel.getRGBdefault();

for (int i = 0; i < iw * ih; i++)

{

int alpha = cm.getAlpha(pixels[i]);

int red = cm.getRed(pixels[i]);

int green = cm.getGreen(pixels[i]);

int blue = cm.getBlue(pixels[i]);

// 增加了图像的亮度

red = (int) (1.1 * red + 30);

green = (int) (1.1 * green + 30);

blue = (int) (1.1 * blue + 30);

if (red >= 255)

{

red = 255;

}

if (green >= 255)

{

green = 255;

}

if (blue >= 255)

{

blue = 255;

}

pixels[i] = alpha << 24 | red << 16 | green << 8 | blue;

}

// 将数组中的象素产生一个图像

return ImageIOHelper

.imageProducerToBufferedImage(new MemoryImageSource(iw, ih,

pixels, 0, iw));

}

/** 转换为黑白灰度图 */

public BufferedImage grayFilter()

{

ColorSpace cs = ColorSpace.getInstance(ColorSpace.CS_GRAY);

ColorConvertOp op = new ColorConvertOp(cs, null);

return op.filter(image, null);

}

/** 平滑缩放 */

public BufferedImage scaling(double s)

{

AffineTransform tx = new AffineTransform();

tx.scale(s, s);

AffineTransformOp op = new AffineTransformOp(tx,

AffineTransformOp.TYPE_BILINEAR);

return op.filter(image, null);

}

public BufferedImage scale(Float s)

{

int srcW = image.getWidth();

int srcH = image.getHeight();

int newW = Math.round(srcW * s);

int newH = Math.round(srcH * s);

// 先做水平方向上的伸缩变换

BufferedImage tmp = new BufferedImage(newW, newH, image.getType());

Graphics2D g = tmp.createGraphics();

for (int x = 0; x < newW; x++)

{

g.setClip(x, 0, 1, srcH);

// 按比例放缩

g.drawImage(image, x - x * srcW / newW, 0, null);

}

// 再做垂直方向上的伸缩变换

BufferedImage dst = new BufferedImage(newW, newH, image.getType());

g = dst.createGraphics();

for (int y = 0; y < newH; y++)

{

g.setClip(0, y, newW, 1);

// 按比例放缩

g.drawImage(tmp, 0, y - y * srcH / newH, null);

}

return dst;

}

}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值