线性代数-MIT-第6讲

这篇博客介绍了线性代数中的向量空间和子空间概念,强调了子空间必须满足的加法和数乘封闭性。接着,解释了列空间的概念,通过矩阵的列向量线性组合来定义,并探讨了不同情况下的解空间。最后,阐述了零空间,即矩阵方程Ax=0的所有解构成的空间,是线性方程组研究的重要部分。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

线性代数-MIT-第6讲

更多文章请关注微信公众号:SLAM之路

目录

线性代数-MIT-第6讲

1.向量空间与子空间

2.列空间

3.零空间


1.向量空间与子空间

    向量空间,即空间内任意两向量相加或数乘仍在空间内,即对线性组合封闭;

                      即空间任意向量v、w,对于任意实数c、d,都满足cv+dw仍在空间内;

    子空间,即某向量空间取其部分,仍能满足对向量加法和数乘封闭,则称为子空间;

    详细参看第五讲;

    例如,R^{3}三维空间的子空间经过原点的平面P和经过原点的直线L,

    那么平面P与直线L的并集是否是子空间?

           若L不在平面内,不是子空间,不满足加法封闭;

    那么平面P与L直线的交集是否是子空间?

           是,交集是原点或过原点直线;

  可以进一步推广,假设有子空间S和T,则两者交集是子空间;

2.列空间

矩阵列空间:

      矩阵A,则矩阵A的列空间记作,C(A);

      举例如下,列向量属于R^{4},则A的列空间属于R^{4}空间的子空间;

      A的列空间由所有列向量的线性组合组成;

     

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值