东方佑
世界500强企业,算法工程师,大模型设计,炼丹
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
2025年:AI将编写99%的代码?OpenAI高管宣告编程革命的临界点
AI对编程的颠覆,远比当年的IDE工具革命更深刻。它不仅改变「如何写代码」,更在重塑「谁来定义代码的价值」。程序员的未来,不在键盘敲击的速率,而在想象力的边界。当AI接管99%的代码,人类终将发现:真正的创造力,永远来自那1%的「不可替代」。参考资料链接链接(完)原创 2025-03-17 12:46:42 · 408 阅读 · 0 评论 -
vSamOut
这一步骤对于 Vision Transformer (ViT) 是非常关键的,因为它将二维图像转换为一系列的一维向量,即所谓的“patch embeddings”。的自定义神经网络模型的实现。类是一个自定义的注意力机制模块,它通过多个线性变换处理输入数据,并使用累积最大值操作来捕获序列中的全局信息。方法中,输入图像被卷积操作分割并投影到指定维度,接着是展平和调整维度的操作,最后加上位置编码(如果启用)。方法首先通过三个不同的线性层处理输入数据,然后通过累积最大值操作聚合信息,最终返回处理后的输出和状态。原创 2025-02-13 10:22:32 · 481 阅读 · 0 评论 -
paddle 版本的unet 丝滑版本
Decoder负责将编码后的特征图解码,通过反卷积层和跳跃连接将特征图的分辨率逐步还原。UNet是整个神经网络模型,包含了四个Encoder、四个Decoder和中间的卷积层。在main函数中,创建了一个UNet模型,并用随机数生成了一个形状为[1, 3, 123, 123]的输入数据。U-Net是一种用于图像分割的深度学习模型,主要用于将输入图像分割成具有相同语义的不同区域。这段代码使用PaddlePaddle框架实现,它是一个基于动态图的深度学习框架,可以方便地定义和训练各种神经网络模型。原创 2024-02-20 19:56:54 · 345 阅读 · 0 评论 -
镜像卷积网络能不能解决nlp问题
import paddleclass ReCNN(paddle.nn.Layer): def __init__(self, map_max=4096, hidden_dim=128, steps=20): super(ReCNN, self).__init__() self.map_max = paddle.create_parameter(shape=[map_max, hidden_dim], dtype='float32') self.step原创 2023-05-31 19:36:15 · 553 阅读 · 0 评论 -
如何使用chatgpt写一个完整2048
这里使用了Python标准库中的pickle模块来进行对象的序列化和反序列化,将游戏状态存储为pickle文件。同时也提供了清空存档状态的功能。以上是可能需要开发的主要模块和功能。当然,具体实现方式可能因人而异,可以根据自己的编码习惯和技能水平进行调整。在上面的示例代码中,我们首先使用Pygame mixer初始化音效库,然后使用。你也可以根据需要自行添加其他声效音乐模块功能。方法加载了一个方块移动音效文件,并在需要时使用。以列举的方式一一列举出每个模块每个功能。应该如何设计各个模块各个模块的功能。原创 2023-04-27 20:51:18 · 1359 阅读 · 0 评论 -
超大规模记忆输入型nlp自回归神经网络 :PaddlePaddle深度学习实践:基于记忆机制的序列建模网络设计
【代码】超大规模记忆输入型nlp自回归神经网络。原创 2023-03-17 14:23:33 · 160 阅读 · 0 评论 -
超长文本输入nlp自回归网络:PaddlePaddle深度学习实践:基于分层记忆机制的序列建模网络设计
【代码】超长文本输入nlp自回归网络。原创 2023-03-16 22:20:24 · 255 阅读 · 0 评论 -
前文编码nlp自回归任务
训练集上验证可达90 这只是个小网络 设计的好点的网络会如何。# 使用前四个值表示第五个值 统计相对编码。使用验证集测试也未可知。原创 2023-03-14 20:08:25 · 158 阅读 · 0 评论 -
通用智能如何拥有生命的简单设计
这里先进行简单的行为属性记录,后期如果需要高级智能生命必须将所有感受记录下来。当记录表为空且模仿表也为空的时候记录行为,记录的内容则是最小的单元。便开始模仿该行为交互同时记录下来该模仿的反馈和交互的最小单元。前期我们先将查模和记录模三个表进行系统的控制和自动处理。其中反馈时间T1小于交互时间T0的任务是积极反馈。至于如何关联是要通过各种感官的感觉一致的才能关联。这个是整个行为交互过程中最小的记录单元。记录和模仿都不为空的时候便进行组合关联。图二的每个元素都代表多个这样的小单元。能量少的时候的各种行为设定。原创 2023-01-30 21:51:21 · 592 阅读 · 0 评论 -
使用扩散模型训练文本贴图
使用扩散模型训练文本贴图原创 2022-12-29 15:15:27 · 337 阅读 · 0 评论 -
加法扩散模型全部过程推导和实现代码
通过简单的方法实现扩散和逆扩散原创 2022-12-21 20:41:23 · 346 阅读 · 0 评论 -
这样也可以让图像正向扩散
希望多一些实事求是原创 2022-12-17 14:23:15 · 567 阅读 · 0 评论 -
昆仑天工开源的AIGC
封面不是生成原创 2022-12-16 21:53:57 · 942 阅读 · 0 评论 -
扩散模型类似的方式训练text_to_text可不可以
本质使用的是等差随机求解一个向量到另一个向量的一个解而后不断的辗转预测原创 2022-12-13 20:15:12 · 432 阅读 · 0 评论 -
深度活体模型带交互模型版
交互模型为一个简单的分类模型原创 2022-12-12 20:27:42 · 315 阅读 · 0 评论 -
简单的深度活体智能记忆模型
深度模型像cpu一样的工作那么获取就能走向通用人工智能原创 2022-12-11 18:30:01 · 403 阅读 · 0 评论 -
使用分贝的波动大小将声音数据降维成字符
数据降低维度原创 2022-11-16 21:14:58 · 929 阅读 · 0 评论 -
多层串联拼接网络
适配大的分辨率率原创 2022-11-16 21:01:47 · 497 阅读 · 0 评论 -
音频 控制生成 图像 训练实例
目前只能低分辨率达到生产能力 还是 灰度图原创 2022-11-07 02:23:58 · 469 阅读 · 0 评论 -
gru训练和解码 传入固定h 效果
gru解码训练时候传入可训练h原创 2022-08-14 21:53:44 · 283 阅读 · 0 评论 -
自我认知是智能最高维度的智力活动
神经网络的高维思考原创 2022-08-14 16:48:19 · 393 阅读 · 0 评论 -
python 将图像变为矢量图(可字符和序列化)-将图像转换为十六进制编码的压缩实验:原理与实现
可以使用此 方法放大图片或者使用其进行序列化字符化可以应用到序列到序列,及 使用 字符模型训练生成 图像原创 2022-07-27 23:53:59 · 2211 阅读 · 0 评论 -
使用深度学习制作机器人大脑图纸
基础机器大脑模拟原创 2022-07-17 21:43:12 · 294 阅读 · 0 评论 -
神经网络图翻译为图-# 基于PaddlePaddle的图像编码解码网络实现详解
图到图 可以做的事情有很多比如 线稿上色比如改变画风改变背景原创 2022-07-13 09:56:51 · 167 阅读 · 0 评论 -
六度通用人工智能模型系统制作过程
将小说的所有文章都使用六个sum 转为 数据集后按照下面的配置配好数据集后进行模型微调对话,具有记忆的智能体或将诞生原创 2022-06-03 10:35:16 · 475 阅读 · 0 评论 -
这个过程也许就是机器翻译的机制
简单的解释 主要就是序列到序列的思想原创 2022-04-09 13:49:20 · 1195 阅读 · 0 评论 -
nlp 之 pi 周期编码
经过一些reindex 操作原创 2022-04-09 11:49:08 · 2283 阅读 · 0 评论 -
N分类模型评估计算方法
分类模型评估方法原创 2022-04-05 14:59:52 · 409 阅读 · 0 评论 -
隔空操作之通过简单计算识别手的挥动反向
通过简单的计算识别手的挥动方向原创 2022-03-11 17:07:10 · 218 阅读 · 0 评论 -
脑细胞膜等效神经网路12分类实例
脑细胞膜等效神经网路12分类实例原创 2022-03-01 21:58:05 · 550 阅读 · 0 评论 -
脑细胞膜等效神经网路简单分类实例
简单的分类实例只能证明和正常网络没区别原创 2022-02-28 20:28:38 · 188 阅读 · 0 评论 -
脑细胞膜等效神经网路训练代码
脑细胞膜等效神经网路训练代码原创 2022-02-28 20:25:38 · 217 阅读 · 0 评论 -
强行分类提取特征自编码网络例4
假设调优 事实证明输出前尽量不要使用normal normal 尽量距离输出层远一些,用了可以加速收敛原创 2022-02-27 21:51:33 · 207 阅读 · 0 评论 -
强行分类提取特征自编码网络例3
假设3调优原创 2022-02-27 21:48:47 · 229 阅读 · 0 评论 -
强行分类提取特征自编码网络例2
假设调优原创 2022-02-27 21:47:41 · 207 阅读 · 0 评论 -
强行分类提取特征自编码网络例1
假设原创 2022-02-27 20:36:41 · 233 阅读 · 0 评论 -
超分辨率软件
人工智能超分辨率原创 2022-02-03 12:18:31 · 719 阅读 · 0 评论 -
贝爷公式的先后验
贝爷原创 2022-01-12 22:12:00 · 274 阅读 · 0 评论 -
傅里叶主频猜想
可将音频分离成 几个参数,这样能提取内容特征和音色特征原创 2022-01-08 17:40:45 · 527 阅读 · 0 评论 -
利用贝爷的公式分类-从数学公式到代码实现:手把手教你理解朴素贝叶斯分类器
简单的解释原创 2022-01-02 10:06:29 · 311 阅读 · 0 评论