超级计算机在天文学的应用,高性能计算与天文学

本文详细介绍了线性方程组的多种求解方法,包括三角形方程组的回代解法、三对角方程组的奇偶归约法以及稠密线性方程组的高斯消去法和高斯-约旦法。针对这些方法,文章探讨了它们的并行化策略,如SISD和SIMD-CREW上的回代算法,并分析了不同方法的时间复杂度和并行效率。同时,还讨论了稀疏线性方程组的迭代解法及其并行化挑战。内容涵盖了从直接解法到迭代法的多种并行计算技术,旨在提高计算效率和适应大规模计算需求。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

展开查看详情

1.2018/6/6 1 并行计算

2.第十章 线性方程组的求解 10.1 三角形方程组的求解 10.2 三对角方程组的求解 10.3 稠密线性方程组的求解 10.4 稀疏线性方程组的求解 2018/6/6 2

3.10.1 三角形方程组的求解 10.1.1 基本术语 10.1.2 上三角方程组的求解 2018/6/6 3

4. 基本术语 2018/6/6 4 线性方程组的定义和符号 a 1,1 x 1 + a 1,2 x 2 + … + a 1,n x n = b 1 a 2,1 x 1 + a 2,1 x 2 + … + a 2,n x n = b 2 a n,1 x 1 + a n,1 x 2 + … + a n,n x n = b n 记为 AX=b

5.10.1 三角形方程组的求解 10.1.1 基本术语 10.1.2 上三角方程组的求解 2018/6/6 5

6.上三角方程组的回代解法并行化 (1)SISD 上的回代算法 Begin (1)for i =n downto 1 do (1.1)x i =b i / a ii (1.2)for j=1 to i-1 do b j = b j -a ji x i a ji =0 endfor endfor End 上三角方程组的求解 2018/6/6 6 可并行化

7. 上三角方程组的求解 2018/6/6 7 上三角方程组的回代解法并行化 (2)SIMD-CREW 上的并行回代算法 - 划分 : p 个处理器行循环带状划分 - 算法 Begin for i=n downto 1 do x i =b i /a ii for all P j , where 1≤j≤p do for k=j to i-1 step p do b k =b k -a ki x i a ki =0 endfor endfor endfor End // p(n)=n, t(n)=n

8.第十章 线性方程组的求解 10.1 三角形方程组的求解 10.2 三对角方程组的求解 10.3 稠密线性方程组的求解 10.4 稀疏线性方程组的求解 2018/6/6 8

9.10.2 三对角方程组的求解 10.2.1 直接求解法 10.2.2 奇偶归约法 2018/6/6 9

10. 三对角方程组的直接求解法 2018/6/6 10 Gauss 消去法 ( 难以并行化 ) ① 消元 ② 回代 注:由于三对角的 方程组的特殊性, 一次消元或一次 回代,只涉及邻 近一个方程,故 难以并行化。

11.10.2 三对角方程组的求解 10.2.1 直接求解法 10.2.2 奇偶归约法 2018/6/6 11

12. 三对角方程组的奇偶归约法 2018/6/6 12 奇偶归约求解法 ( 可并行化 ) 三对角方程可以写成如下形式 串行算法描述 ① 利用上下相邻方程消去偶序号方程中的奇下标变量 : 方程乘上某个数消去 2i 方程中的 项 , 方程乘上某个数 消去 方程中的 项 , 使 方程变为

13. 三对角方程组的奇偶归约法 2018/6/6 13 ② 重复 ① 最终可得 : case 1: case 2: 可以分别得到 解得 ③ 回代求解 x 并行化分析 : ① 、 ② 消去奇下标可以并行化; ③ 回代求解可以并行化 PRAM-CREW 上,时间 : 处理器数:

14.第十章 线性方程组的求解 10.1 三角形方程组的求解 10.2 三对角方程组的求解 10.3 稠密线性方程组的求解 10.4 稀疏线性方程组的求解 2018/6/6 14

15.10.3 稠密线性方程组的求解 10.3.1 有回代的高斯消去法 10.3.2 无回代的高斯 - 约旦法 10.3.3 迭代求解的高斯 - 赛德尔法 2018/6/6 15

16. 有回代的高斯消去法 2018/6/6 16 算法基本原理 求解过程分为消元和回代两个阶段,消元是将系数矩阵 A 化为上三角阵 T ,然后对 TX=c 进行回代求解。 消元过程中可以应用选主元方法,增加算法的数值稳定性。 图 10.1 是消元过程图:

17. 有回代的高斯消去法 2018/6/6 17 并行化分析 消元和回代均可以并行化; 选主元也可以并行化; 消元过程的并行化图示:处理器按行划分

18.10.3 稠密线性方程组的求解 10.3.1 有回代的高斯消去法 10.3.2 无回代的高斯 - 约旦法 10.3.3 迭代求解的高斯 - 赛德尔法 2018/6/6 18

19.串行算法原理 ① 消元 : 通过初等行变换 , 将 ( A,b ) 化为主对角线矩阵 , 记 b 为 A 的第 n+1 列 ② 求解 :   无回代的高斯 - 约旦法 2018/6/6 19

20. 无回代的高斯 - 约旦法 2018/6/6 20 SIMD-CREW 上的并行算法 (1) 处理器 : n×(n+1) 个处理器 , 排成 n×(n+1) 的矩阵 , 处理器编号为 , i =1~n, k=1~n+1 (2) 并行化分析 ① 消元的并行化 : // O(n) for j=1 to n-1, each Par-do // 第 j 次消元 ( i <>j): <— 0 ( i <>j, k=j+1~n+1 ): <— - end for ② 求解 : for each (j=1~n) Par-do: <— , //O(1) (3) 时间分析 : t(n)=O(n), p(n)=O( n 2 ), c(n)=O( n 3 ) 成本最优?

21.成本最优? 串行算法的最优时间: 由于 x=A -1 b ①A -1 b( 假设已有 A -1 ): O(n 2 ) ② 求 A -1 : ∴ 求 A -1 需要 : 2 次 n/2×n/2 矩阵的逆 i (n/2) 6 次 n/2×n/2 矩阵的乘 m(n/2) 2 次 n/2×n/2 矩阵的加 a(n/2) i (n)= i (n/2)+6m(n/2)+2a(n/2) a(n/2)=n 2 /2, m(n/2)=O((n/2) x ) 2<x<2.5 => i (n)=O( n x ) 综上,串行算法的最优时间为 O( n x ) 2<x<2.5 无回代的高斯 - 约旦法 2018/6/6 21

22.10.3 稠密线性方程组的求解 10.3.1 有回代的高斯消去法 10.3.2 无回代的高斯 - 约旦法 10.3.3 迭代求解的高斯 - 赛德尔法 2018/6/6 22

23.迭代求解的高斯 - 赛德尔法 2018/6/6 23 串行算法原理 如果对某个 k, 给定的误差允许值 c 有 则认为迭代是收敛的。 并行化分析 由于每次迭代需要使用本次迭代的前面部分值,因而难以到同步的并行算法,下面给出一个异步的并行算法

24.迭代求解的高斯 - 赛德尔法 2018/6/6 24 MIMD 异步并行算法 N 个处理器 ( N≤n ) 生成 n 个进程 , 每个进程计算 x 的一个分量 Begin ( (2) 生成进程 i (3) 进程 i repeat ( i ) (ii) until End

25.第十章 线性方程组的求解 10.1 三角形方程组的求解 10.2 三对角方程组的求解 10.3 稠密线性方程组的求解 10.4 稀疏线性方程组的求解 2018/6/6 25

26.10.4 稀疏线性方程组的求解 10.4.1 线性方程组的并行化方法 10.4.2 稀疏线性方程组的迭代解法 10.4.3 高斯 - 赛德尔迭代法的并行化 2018/6/6 26

27.线性方程方程的并行化方法 2018/6/6 27 线性方程组选择算法的考虑因素 系数矩阵 A 的结构 dense Gaussian elimination, etc Sparse iterative method triangular substitution, odd-even reduction certain PDEs multigrid, etc 计算精度要求 Gaussian elimination: more accurate, more expensive Conjugate gradients: less accurate, less expensive 计算环境要求 architecture, available languages, compiler quality libraries?

28.线性方程方程的并行化方法 2018/6/6 28 求解方法的并行化 (1) 直接解法的并行化 ( 用于稠密线性方程组 ) - Gauss 消去法 ( 包括选主元的 Gauss 消去法 ) - Gauss-Jordan 消去法 - LU 分解法 (2) 迭代法的并行化 ( 用于稠密和稀疏线性方程组 ) - Jacobi - Gauss-Seidel( 可异步并行化 ) - Jacobi OverRelaxation(JOR) - Gauss-Seidel OverRelaxation(SOR) - Conjugate Gradient

29.10.4 稀疏线性方程组的求解 10.4.1 线性方程组的并行化方法 10.4.2 稀疏线性方程组的迭代解法 10.4.3 高斯 - 赛德尔迭代法的并行化 2018/6/6 29

内容概要:本文提出了一种融合多尺度Wavelet模型的跨文化英语交际智能模型系统(FL-DP-Wavelet),旨在通过多模态数据融合、多尺度特征提取跨文化适应性建模,提升智能系统的文化敏感性语境理解能力。该模型通过结合小波变换深度学习优化语言信号的时频特征提取,基于跨文化敏感性发展模型(DMIS)构建文化适应性评估模块,并设计多模态数据融合框架,增强跨文化场景下的语义解析鲁棒性。实验结果显示,系统在跨文化语境下的语义理解准确率提升12.7%,文化适应性评分优于基线模型15.3%。 适合人群:从事跨文化交流、国际商务、外语教育的研究人员技术开发者,特别是对智能系统在跨文化场景中的应用感兴趣的学者工程师。 使用场景及目标:①跨文化商务谈判、教育合作公共外交等场景中,需要提升智能系统的文化敏感性语境理解能力;②帮助系统实现实时文化适应,减少因文化差异引起的语义误判非语言行为冲突;③通过多模态数据融合,增强智能系统在复杂跨文化环境中的语义解析能力。 其他说明:该研究不仅提出了新的理论框架技术路径,还在实际应用中验证了其有效性优越性。未来将聚焦于小波-Transformer耦合、联邦学习隐私保护在线学习算法,进一步推动系统向自主文化融合演进。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值