python逻辑回归预测_Python之逻辑回归模型来预测

该博客通过Python实现了一个逻辑回归模型,用于预测学生是否会被录取。文章展示了如何加载数据、绘制数据分布、定义sigmoid函数、实现逻辑回归算法、进行梯度下降优化,并讨论了不同的梯度下降方法和数据标准化的影响。最终,模型的准确率为60%。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

建立一个逻辑回归模型来预测一个学生是否被录取。

20190108161141775604.png

20190108161141956275.png

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

import os

path=‘data‘+os.sep+‘Logireg_data.txt‘

pdData=pd.read_csv(path,header=None,names=[‘Exam1‘,‘Exam2‘,‘Admitted‘])

pdData.head()

print(pdData.head())

print(pdData.shape)

positive=pdData[pdData[‘Admitted‘]==1]#定义正

nagative=pdData[pdData[‘Admitted‘]==0]#定义负

fig,ax=plt.subplots(figsize=(10,5))

ax.scatter(positive[‘Exam1‘],positive[‘Exam2‘],s=30,c=‘b‘,marker=‘o‘,label=‘Admitted‘)

ax.scatter(nagative[‘Exam1‘],nagative[‘Exam2‘],s=30,c=‘r‘,marker=‘x‘,label=‘not Admitted‘)

ax.legend()

ax.set_xlabel(‘Exam 1 score‘)

ax.set_ylabel(‘Exam 2 score‘)

plt.show()#画图

##实现算法 the logistics regression 目标建立一个分类器 设置阈值来判断录取结果

##sigmoid 函数

def sigmoid(z):

return 1/(1+np.exp(-z))

#画图

nums=np.arange(-10,10,step=1)

fig,ax=plt.subplots(figsize=(12,4))

ax.plot(nums,sigmoid(nums),‘r‘)#画图定义

plt.show()

#按照理论实现预测函数

def model(X,theta):

return sigmoid(np.dot(X,theta.T))

pdData.insert(0,‘ones‘,1)#插入一列

orig_data=pdData.as_matrix()

cols=orig_data.shape[1]

X=orig_data[:,0:cols-1]

y=or

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值