基于SharpIco开发图片转ICO工具网站

基于SharpIco开发图片转ICO工具网站

SharpIcoWeb

License

.NET

Stars

📝项目介绍

SharpIcoWeb是基于SharpIco开发的图片转ICO工具网站,支持上传png、jpg等图片转换为多尺寸的Ico图片文件。采用前后端分离技术。

后端接口使用 .NET Minimal API开发,够轻量。

📍预览地址

https://ico.pljzy.top/

🎯 应用场景

  • 网站Favicon 🌐
  • 软件图标 🖥️
  • 个性化文件夹标识 📂
<link rel="icon" type="image/x-icon" href="/logo.ico" />

✨核心技术

Vite+Vue+Element-Plus 极速的开发服务器和高效的生产构建🗂️ → ❌ 纯文件操作(无需SQLite/MySQL)
🏗️.NET 9 MiniAPI 轻量级API开发,处理图像转换业务逻辑🖼️ 后端使用的强大图像处理库,实现PNG/JPG转ICO
🐳 可容器化(Docker 支持)📱 + 💻 响应式设计(适配移动端)

✅后续更新

🚀快速开始

Docker部署

注意注释部分配置可能需要根据实际情况修改

Docker CLI
docker-compose up --build -d
default.conf
server {
    listen       5173; # 配置端口
    server_name  0.0.0.0; # 修改为docker服务宿主机的ip 
  
    # 设置允许的最大请求体大小(例如 100MB)
    client_max_body_size 100M;
 
    location / {
        root   /usr/share/nginx/html;
        index  index.html index.htm;
        try_files $uri $uri/ /index.html =404;
    }
  
    location /api {
        proxy_pass http://backend:5235;  # Docker 内部网络
        proxy_set_header Host $host;
        proxy_set_header X-Real-IP $remote_addr;
    }
 
    error_page   500 502 503 504  /50x.html;
    location = /50x.html {
        root   html;
    }
}
Docker Compose
version: '3.8'

services:
  frontend:
    build:
      context: ./sharp-ico-vue   # 指向前端目录
      dockerfile: Dockerfile
    ports:
      - "5173:5173"               # 前端映射到宿主机的5173端口
    depends_on:
      - backend

  backend:
    build:
      context: .    # 指向后端目录
      dockerfile: Dockerfile
    ports:
      - "5235:5235"            # 后端端口

手动部署

clone

git clone https://github.com/ZyPLJ/SharpIcoWeb.git

后端运行
cd SharpIcoWeb

dotnet build -c Release

dotnet run
前端运行
cd ..

cd sharp-ico-vue

npm install

npm run dev

👀如何使用

前后端项目运行或部署后,打开运行后网址。

选择需要生成的ICO图表尺寸,可多选

image

上传图片文件,点击转换。

image

1.1.0 版本

该版本更新了分别生成功能,将图片转为不同尺寸的单ico文件。

image

1.2.0 版本

该版本更新了前端显示ICO文件图标数量数据、大小、偏移等数据功能。

image

🛠 开发指南

项目结构

sharp-ico/
├── SharpIco/               # 图标转换类库  
│   ├── SharpIco.csproj
├── SharpIcoWeb/            # 后端Api项目
│   ├── SharpIcoWeb.csproj
├── sharp-ico-vue           # 前端项目

开发环境

  • .Net 9
  • Node.js 20.19+
  • Vue3

运行项目

后端
dotnet build -c Release

dotnet run
前端
npm install

npm run dev

常见问题

部署后前端容器不启动

unknown directive "server" in /etc/nginx/conf.d/default.conf:1

查看前端目录下 default.conf文件开头是否存在特殊符号或者空格:

image

相关链接

原创作者: ZYPLJ 转载于: https://www.cnblogs.com/ZYPLJ/p/18957808
本项目构建于RASA开源架构之上,旨在实现一个具备多模态交互能力的智能对话系统。该系统的核心模块涵盖自然语言理解、语音文本处理以及动态对话流程控制三个主要方面。 在自然语言理解层面,研究重点集中于增强连续对话中的用户目标判定效能,并运用深度神经网络技术提升关键信息提取的精确度。目标判定旨在解析用户话语背后的真实需求,从而生成恰当的反馈;信息提取则专注于从语音输入中析出具有特定意义的要素,例如个体名称、空间位置或时间节点等具体参数。深度神经网络的应用显著优化了这些功能的实现效果,相比经典算法,其能够解析更为复杂的语言结构,展现出更优的识别精度与更强的适应性。通过分层特征学习机制,这类模型可深入捕捉语言数据中隐含的语义关联。 语音文本处理模块承担将音频信号化为结构化文本的关键任务。该技术的持续演进大幅提高了人机语音交互的自然度与流畅性,使语音界面日益成为高效便捷的沟通渠道。 动态对话流程控制系统负责维持交互过程的连贯性与逻辑性,包括话轮换、上下文关联维护以及基于情境的决策生成。该系统需具备处理各类非常规输入的能力,例如用户使用非规范表达或对系统指引产生歧义的情况。 本系统适用于多种实际应用场景,如客户服务支持、个性化事务协助及智能教学辅导等。通过准确识别用户需求并提供对应信息或操作响应,系统能够创造连贯顺畅的交互体验。借助深度学习的自适应特性,系统还可持续优化语言模式理解能力,逐步完善对新兴表达方式与用户偏好的适应机制。 在技术实施方面,RASA框架为系统开发提供了基础支撑。该框架专为构建对话式人工智能应用而设计,支持多语言环境并拥有活跃的技术社区。利用其内置工具集,开发者可高效实现复杂的对话逻辑设计与部署流程。 配套资料可能包含补充学习文档、实例分析报告或实践指导手册,有助于使用者深入掌握系统原理与应用方法。技术文档则详细说明了系统的安装步骤、参数配置及操作流程,确保用户能够顺利完成系统集成工作。项目主体代码及说明文件均存放于指定目录中,构成完整的解决方案体系。 总体而言,本项目整合了自然语言理解、语音信号处理与深度学习技术,致力于打造能够进行复杂对话管理、精准需求解析与高效信息提取的智能语音交互平台。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值