streaming接mysql数据库_[Spark streaming举例]-- 实时统计并且存储到mysql数据库中

举例

package com.scala.my

import org.apache.spark.SparkConf

import org.apache.spark.streaming.Durations

import org.apache.spark.streaming.StreamingContext

/**

*

* @author root

* 测试步骤:

*    1\打开h15\h16\h17\h18,启动zookeeper,再启动hadoop集群:start-all.sh,再启动mysql

*    2\在h15上创建文件夹wordcount_checkpoint,用于docheckpoint

*       在h5上mysql的dg数据库中创建表t_word

*    3\启动eclipse的本程序,让他等待着

*    4\在h15的dos窗口下输入单词,以空格分隔的单词(需要在h15上开启端口9999:#nc -lk 9999)

*    5\查询h15上的mysql的dg数据库的t_word表是否有数据即可

*

* 注:建表语句

*     mysql> show create table wordcount;  //查看表语句

CREATE TABLE   t_word (

id  int(11) NOT NULL AUTO_INCREMENT,

updated_time  timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP,

word varchar(255) DEFAULT NULL,

count  int(11) DEFAULT NULL,

PRIMARY KEY (id)

);

*/

*

* 测试结果:通过,注意-----》第74行没有取得数据,原因在最后没有触发事件(封装事件),目前已经解决

*

* sh spark-submit --master spark://de2:7077 --class 全类名 --driver-class-path /mysql-connector-java-5.1.26.jar  sparkstreaming.jar

sh spark-submit --class com.day6.scala.my.PresistMysqlWordCount --master yarn-cluster --driver-class-path /home/spark-1.5.1-bin-hadoop2.4/lib/mysql-connector-

java-5.1.31-bin.jar /home/spark-1.5.1-bin-hadoop2.4/sparkstreaming.jar

$bin/hadoop dfsadmin -safemode leave

也就是关闭Hadoop的安全模式,这样问题就解决了。

*/

object PresistMysqlWordCount {

def main(args: Array[String]): Unit = {

//获取streamingContext,并且设置每5秒切割一次rdd

//    val sc = new StreamingContext(new SparkConf().setAppName("mysqlPresist").setMaster("local[2]"), Durations.seconds(8))

val sc = new StreamingContext(new SparkConf().setAppName("mysqlPresist").setMaster("local[2]"), Durations.seconds(8))

//设置checkpoit缓存策略

/**

* 利用 checkpoint 来保留上一个窗口的状态,

* 这样可以做到移动窗口的更新统计

*/

sc.checkpoint("hdfs://hh15:8020/wordcount_checkpoint")

//    sc.checkpoint("hdfs://h15:8020/wordcount_checkpoint")

//获取doc窗口或者hdfs上的words

//    val lines=sc.textFileStream("hdfs://h15:8020/文件夹名称")  //实时监控hdfs文件夹下新增的数据

val lines = sc.socketTextStream("hh15", 9999)

//    val lines = sc.socketTextStream("h15", 9999)

//压扁

val words = lines.flatMap { x => x.split(" ") }

//map

val paris = words.map { (_, 1) }

//定义一个函数,用于保持状态

val addFunc = (currValues: Seq[Int], prevValueState: Option[Int]) => {

var newValue = prevValueState.getOrElse(0)

for (value wd.foreachPartition(

data => {

val conn = ConnectPool.getConn("root", "1714004716", "hh15", "dg")

//        val conn = ConnectPool.getConn("root", "1714004716", "h15", "dg")

//插入数据

//        conn.prepareStatement("insert into t_word2(word,num) values('tom',23)").executeUpdate()

try {

for (row

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值