使用python的pandas读取数据库中数据,初始化到dataframe的速度过慢问题解决思路...

本文对比了使用pandas自带的read_sql方法与通过JDBC查询方式从Oracle数据库中读取大量数据的性能差异。发现使用JDBC查询方式能显著提高效率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

原生方法

100万数据,在oracle数据库中,使用最方便的pandas自带的read_sql方法

import pandas as pd
import sqlalchemy as sql
db_engine=sql.create_engine('oracle://test01:test01@test001db')
db_df1=pd.read_sql('select * from my_table1',db_engine)

代码是方便了,不过用了快10分钟,dataframe才初始化完成

通过JDBC查询的方式


import pandas as pd
import sqlalchemy as sql
db_engine=sql.create_engine('oracle://test01:test01@test001db')
conn=ora_engine.raw_connection()
cursor=conn.cursor()
queryset=cursor.execute('select * from my_table1')
columns=[for i[0] in queryset.description]
jdbc_data=queryset.fetchall()
db_df1=pd.DataFrame(jdbc_data,columns=["A1","B2","C3"])
db_df1.columns=columns
db_df1.append(df_data)


多几行代码,不过2分钟就完成了dataframe的初始化动作,看来pandas自身的方式是需要优化的,不应该官方的方式对比常规方式有好几倍的性能差异的。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值