go任务调度3(etcd协调服务、raft协议、GRPC协议的原理)

本文深入探讨了Etcd——一种高可用的键值存储系统,以及其背后的Raft共识算法工作原理。详细解释了如何通过Raft算法确保数据在集群间的强一致性,即使在网络分区或节点故障情况下也能正常运行。同时,介绍了Etcd如何利用HTTP+JSON和GRPC协议进行高效的数据交互。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

etcd是将数据存储在集群中的高可用k-v存储。
允许应用实时监听存储中的k-v变化。
能容忍单点故障,能够应对网络分区。

go任务调度3(etcd协调服务、raft协议、GRPC协议的原理)
go任务调度3(etcd协调服务、raft协议、GRPC协议的原理)
go任务调度3(etcd协调服务、raft协议、GRPC协议的原理)
(raft是一个分布式协议,管理的是日志;etcd管理的是k-v,把k-v放到日志里,kv就编程分布式集群了)
go任务调度3(etcd协调服务、raft协议、GRPC协议的原理)
(调用者写入请求发给leader请求写入k-v,leader会将日志实时向follower们复制,leader不会立即返回给调用者,会马上往集群follower做日志拷贝。当日志被复制给N+1个节点后(即大多数),本地提交(也就是告诉客户端提交成功),返回给调用者(客户端),为什么复制给N+1,而不是2N+1后就告诉客户端成功了呢?这就是大多数协议,也就是抽屉理论的重要表现)
go任务调度3(etcd协调服务、raft协议、GRPC协议的原理)
(一旦完成提交,leader会周期性把自己的提交信息告诉所有follower,这样,其他follower也会完成它们的本地提交(这是异步行为,不需要同步,只需要确保日志复制给大多数了就可以)。官方给出的写入性能是:1000次每秒)
go任务调度3(etcd协调服务、raft协议、GRPC协议的原理)
(raft协议本身就是在写日志。第1行是leader节点的日志,后面是4个是follower,也就是总共5个节点。日志是随着请求顺序追加,这里5个节点的大多数是3个节点。其中1-7已经被复制给了3个节点(大多数),这些是一定可以被提交不会丢失的,因为已经复制给大多数了。8总共只有两个节点有,8后面其他的更夸张。有的连3,4,5都没有,这一般是leader和follower之间产生了网络延迟,然而,没关系,只要复制给大多数就不会丢了。所以真个日志的提交已经到了第7个日志)
go任务调度3(etcd协调服务、raft协议、GRPC协议的原理)
go任务调度3(etcd协调服务、raft协议、GRPC协议的原理)
(
第一个leader幸运是f,f写入了3条数据(标识为1的绿色块),并成功复制给了所有节点,然后f宕机了又马上重启。
因为宕机,而f曾经是leader,于是重新选举,踩了狗屎很幸运,f又成了leader。f又提交了3条记录(标识为2的紫色块),但它没有复制给集群中的其他节点(可能f刚成为leader没来得及复制给其他节点又挂掉了)。
f宕机后重启,又踩了狗屎成为了第三任leader,写入5条数据(下标为3的橙色块),没来得及复制有宕了。
然后第四任leader幸运的是e,e写入了4条数据(下标为4的×××块),但它作为leader期间,只把前面两条(下标为4的×××块)数据复制给大多数节点,后两个没来得及复制就宕了......
)
go任务调度3(etcd协调服务、raft协议、GRPC协议的原理)
go任务调度3(etcd协调服务、raft协议、GRPC协议的原理)
(leader写入数据,但只复制给了一个follower,其他由于网络原因没复制,所以无法提交,无法给客户端应答,客户端继续等待...)
go任务调度3(etcd协调服务、raft协议、GRPC协议的原理)
(raft协议是底层原理,etcd将k-v写入storage才是真的。当复制给大多数后,leader就告诉客户端:你的事已经办好了)
go任务调度3(etcd协调服务、raft协议、GRPC协议的原理)
(当old leader重启后,它发现已经有了一个新leader,并且它的数据是落后于new leader的,所以new leader会把a=2复制给old leader,而old leader会发现,原来的a=1没有复制给大多数(未提交状态),而a=2已经完成了大多数复制,所以a=2会覆盖掉a=1。所以在集群中a=2而不是1)
go任务调度3(etcd协调服务、raft协议、GRPC协议的原理)
go任务调度3(etcd协调服务、raft协议、GRPC协议的原理)
(etcd支持通用的http+json协议,但性能较低。sdk内置GRPC协议,性能很高。GRPC是谷歌开源的RPC协议,是基于http2协议。我们用的etcd就是基于GRPC的。我们通过sdk操作etcd中的k-v)
go任务调度3(etcd协调服务、raft协议、GRPC协议的原理)
(能实现像redis一样的时间过期)
go任务调度3(etcd协调服务、raft协议、GRPC协议的原理)
(用有序的key模拟出目录的效果。也就是只要定位到/feature-flags,就能根据它找到类似该目录下的所有目录(其实是key))
go任务调度3(etcd协调服务、raft协议、GRPC协议的原理)
(即便key1=value3覆盖了之前的key1=value1,在etcd中也会有key1=value1这个历史版本(也就是revision=1)。然而我们只关心最新的数据,可以用compact命令完成删减)
go任务调度3(etcd协调服务、raft协议、GRPC协议的原理)
go任务调度3(etcd协调服务、raft协议、GRPC协议的原理)
go任务调度3(etcd协调服务、raft协议、GRPC协议的原理)

转载于:https://blog.51cto.com/5660061/2381641

<think>好的,用户想了解etcd集群的工作原理,特别是与分布式存储架构相关的部分。我需要结合之前的引用内容来组织回答。首先,根据引用[1]到[4],etcd基于Raft协议,用于集群管理、配置共享和节点状态监控。应该先解释Raft一致性算法在etcd中的作用,比如选主、日志复制等。 然后,需要描述集群的组成,比如三个节点的角色:Leader、Follower、Candidate,以及它们之间的交互。引用[4]提到etcd使用Raft协议,而ZooKeeper用的是ZAB,Consul也用Raft,这可能对比较有帮助,但用户主要关注etcd,所以重点放在Raft的实现上。 接下来,数据存储机制是关键。etcd的数据模型是键值对,支持范围查询,这点引用[2]和[4]都有提到。需要解释数据如何通过Raft日志同步到各个节点,保证一致性。另外,引用[4]中的性能优化参数,如--max-request-bytes和快照配置,可以说明数据持久化和恢复机制。 读写流程部分,Leader处理写请求,Follower响应读请求,但为了强一致性可能需要线性化读,这里可能需要引用[2]中的分布式锁和写屏障概念。读写性能方面,引用[4]指出etcd在高性能场景下优化较好,比如使用SSD。 高可用性和灾难恢复也是重点。etcd集群通过多数派机制维持可用性,引用[1]提到超大规模集群管理,说明其扩展性。灾难恢复部分引用[4]的技术对比,可以提到快照和日志回放。 最后,应用场景如Kubernetes的服务发现和配置存储,引用[3]和[4]都提到了,需要联系实际用例。同时,相关问题可以围绕选主机制、数据一致性保证、性能优化等展开,帮助用户深入理解。</think>### etcd集群工作原理分步解析 ### 一、Raft一致性协议核心机制 etcd集群采用Raft算法实现分布式一致性,包含三个关键过程: 1. **Leader选举**:当Follower节点超过$election-timeout$(默认5秒)未收到心跳,会发起选举成为Candidate,需要获得$N/2+1$节点的投票才能成为Leader[^4] $$ \text{选举成功条件}:\text{得票数} > \lfloor \frac{N}{2} \rfloor $$ 2. **日志复制**:Leader将客户端请求封装为日志条目,通过$AppendEntries$ RPC同步给Followers,收到多数节点确认后提交 3. **成员变更**:使用Joint Consensus机制实现节点动态增删,确保配置变更期间集群持续可用 ### 二、集群节点角色与交互 | 角色 | 职责 | 状态转换条件 | |------------|--------------------------------------|----------------------------------| | Leader | 处理所有写请求,发送心跳包 | 失去多数节点连接时退位 | | Follower | 响应Leader心跳,转发写请求到Leader | 选举超时后成为Candidate | | Candidate | 发起选举投票请求 | 获得多数票成为Leader | ![etcd集群架构图](https://example.com/etcd-arch.png)(示意图:三节点组成的Raft集群) ### 三、数据存储与同步机制 1. **键值存储引擎**:采用B+树结构的MVCC多版本存储 - 每个修改操作生成新的修订版本(revision) - 支持事务操作:`IF`条件判断 + `THEN/ELSE`执行体 2. **数据同步流程**: ```go // 伪代码示例写请求处理 func handlePutRequest(key, value) { if currentRole != Leader { return redirectToLeader() } logEntry := createLogEntry(key, value) replicateToFollowers(logEntry) if majorityAckReceived() { applyToStateMachine() return successResponse() } } ``` 3. **持久化保障**: - 预写日志(WAL):每次更新先写入磁盘日志 - 定期快照:当日志条目超过$snapshot-count$(默认10万)时创建快照[^4] ### 四、读写操作处理 1. **写请求**: - 必须通过Leader节点处理 - 需要满足$W > N/2$的写入确认(W为写确认节点数) 2. **读请求**: - 默认提供线性一致性读 - 通过ReadIndex机制避免脏读: ```mermaid sequenceDiagram Client->>Leader: 读请求 Leader->>Leader: 记录当前commit index Leader->>Followers: 心跳确认多数派存活 Leader->>Client: 返回最新已提交数据 ``` ### 五、高可用保障措施 1. **故障恢复**: - Leader故障:在$election-timeout$内完成新Leader选举 - 网络分区:采用PreVote机制防止脑裂 2. **动态配置**: - 安全变更成员:`etcdctl member add/remove` - 滚动升级支持:通过`--enable-v2=false`逐步淘汰旧协议 3. **监控指标**: - 核心指标监控项: ```bash etcd_server_leader_changes_seen_total # Leader变更次数 etcd_disk_wal_fsync_duration_seconds # 持久化延迟 etcd_network_client_grpc_sent_bytes # 网络吞吐量 ``` ### 六、与Kubernetes的集成实践 1. **服务发现**: - 存储所有Pod的Endpoint信息 - Watch机制实时通知服务变更 2. **配置管理**: - 存储集群的ConfigMap和Secret - 支持加密存储敏感数据 3. **调度协调**: - 存储节点状态信息 - 协助完成分布式锁控制
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值