sqlalchemy(二)高级用法(注意join的用法)

本文详细介绍了SQLAlchemy的高级用法,包括外键配置实现一对多关系、使用JOIN进行联表查询、通过表的别名简化查询、运用子查询增强查询能力、利用contains进行模糊匹配以及理解数据删除时的外键行为。通过这些技巧,可以更高效地操作Python中的数据库。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

外键以及relationship

首先创建数据库,在这里一个user对应多个address,因此需要在address上增加user_id这个外键(一对多)。

#!/usr/bin/env python
# encoding: utf-8

from sqlalchemy import create_engine
from sqlalchemy import Column
from sqlalchemy import Integer
from sqlalchemy import String
from sqlalchemy import ForeignKey
from sqlalchemy.orm import backref
from sqlalchemy.orm import sessionmaker
from sqlalchemy.orm import relationship, backref
from sqlalchemy.ext.declarative import declarative_base


Base = declarative_base()


class User(Base):
    __tablename__ = 'users'

    id = Column(Integer, primary_key=True)
    name = Column(String(32))

    addresses = relationship("Address", order_by="Address.id", backref="user")


class Address(Base):
    __tablename__ = 'addresses'
    id = Column(Integer, primary_key=True)
    email_address = Column(String(32), nullable=False)
    user_id = Column(Integer, ForeignKey('users.id'))

    #user = relationship("User", backref=backref('addresses', order_by=id))


engine  = create_engine('mysql://root:root@localhost:3306/test', echo=True)
#Base.metadata.create_all(engine) 

接下来,调用user和address来添加数据,

>>> jack = User(name='jack')
>>> jack.address
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
AttributeError: 'User' object has no attribute 'address'
>>> jack.addresses
[]
>>> jack.addresses = [Address(email_address='test@test.com'), Address(email_address='test1@test1.com')]
>>> jack.addresses
[<demo.Address object at 0x7f2536564f90>, <demo.Address object at 0x7f2535dc71d0>]
>>> session.add(jack)
>>> session.commit()
2015-08-19 13:45:36,237 INFO sqlalchemy.engine.base.Engine SHOW VARIABLES LIKE 'sql_mode'
2015-08-19 13:45:36,237 INFO sqlalchemy.engine.base.Engine ()
2015-08-19 13:45:36,238 INFO sqlalchemy.engine.base.Engine SELECT DATABASE()
2015-08-19 13:45:36,238 INFO sqlalchemy.engine.base.Engine ()
2015-08-19 13:45:36,239 INFO sqlalchemy.engine.base.Engine show collation where `Charset` = 'utf8' and `Collation` = 'utf8_bin'
2015-08-19 13:45:36,239 INFO sqlalchemy.engine.base.Engine ()
2015-08-19 13:45:36,239 INFO sqlalchemy.engine.base.Engine SELECT CAST('test plain returns' AS CHAR(60)) AS anon_1
2015-08-19 13:45:36,239 INFO sqlalchemy.engine.base.Engine ()
2015-08-19 13:45:36,240 INFO sqlalchemy.engine.base.Engine SELECT CAST('test unicode returns' AS CHAR(60)) AS anon_1
2015-08-19 13:45:36,240 INFO sqlalchemy.engine.base.Engine ()
2015-08-19 13:45:36,240 INFO sqlalchemy.engine.base.Engine SELECT CAST('test collated returns' AS CHAR CHARACTER SET utf8) COLLATE utf8_bin AS anon_1
2015-08-19 13:45:36,240 INFO sqlalchemy.engine.base.Engine ()
2015-08-19 13:45:36,241 INFO sqlalchemy.engine.base.Engine BEGIN (implicit)
2015-08-19 13:45:36,242 INFO sqlalchemy.engine.base.Engine INSERT INTO users (name) VALUES (%s)
2015-08-19 13:45:36,242 INFO sqlalchemy.engine.base.Engine ('jack',)
2015-08-19 13:45:36,243 INFO sqlalchemy.engine.base.Engine INSERT INTO addresses (email_address, user_id) VALUES (%s, %s)
2015-08-19 13:45:36,243 INFO sqlalchemy.engine.base.Engine ('test@test.com', 1L)
2015-08-19 13:45:36,243 INFO sqlalchemy.engine.base.Engine INSERT INTO addresses (email_address, user_id) VALUES (%s, %s)
2015-08-19 13:45:36,243 INFO sqlalchemy.engine.base.Engine ('test1@test1.com', 1L)
2015-08-19 13:45:36,244 INFO sqlalchemy.engine.base.Engine COMMIT
>>> 

此时,查看数据库,可以得到刚才插入的数据,

mysql> select * from users;
+----+------+
| id | name |
+----+------+
|  1 | jack |
+----+------+
1 row in set (0.00 sec)

mysql> select * from addresses;
+----+-----------------+---------+
| id | email_address   | user_id |
+----+-----------------+---------+
|  1 | test@test.com   |       1 |
|  2 | test1@test1.com |       1 |
+----+-----------------+---------+
2 rows in set (0.00 sec)

join查询

如果不使用join的话,可以直接联表查询,

>>> session.query(User.name, Address.email_address).filter(User.id==Address.user_id).filter(Address.email_address=='test@test.com').all()
2015-08-19 14:02:02,877 INFO sqlalchemy.engine.base.Engine SELECT users.name AS users_name, addresses.email_address AS addresses_email_address 
FROM users, addresses 
WHERE users.id = addresses.user_id AND addresses.email_address = %s
2015-08-19 14:02:02,878 INFO sqlalchemy.engine.base.Engine ('test@test.com',)
[('jack', 'test@test.com')]

在sqlalchemy中提供了Queqy.join()函数,

>>> session.query(User).join(Address).filter(Address.email_address=='test@test.com').first()
2015-08-19 14:06:56,624 INFO sqlalchemy.engine.base.Engine SELECT users.id AS users_id, users.name AS users_name 
FROM users INNER JOIN addresses ON users.id = addresses.user_id 
WHERE addresses.email_address = %s 
 LIMIT %s
2015-08-19 14:06:56,624 INFO sqlalchemy.engine.base.Engine ('test@test.com', 1)
<demo.User object at 0x7f9a74139a10>
>>> session.query(User).join(Address).filter(Address.email_address=='test@test.com').first().name
2015-08-19 14:07:04,224 INFO sqlalchemy.engine.base.Engine SELECT users.id AS users_id, users.name AS users_name 
FROM users INNER JOIN addresses ON users.id = addresses.user_id 
WHERE addresses.email_address = %s 
 LIMIT %s
2015-08-19 14:07:04,224 INFO sqlalchemy.engine.base.Engine ('test@test.com', 1)
'jack'
>>> session.query(User).join(Address).filter(Address.email_address=='test@test.com').first().addresses
2015-08-19 14:07:06,534 INFO sqlalchemy.engine.base.Engine SELECT users.id AS users_id, users.name AS users_name 
FROM users INNER JOIN addresses ON users.id = addresses.user_id 
WHERE addresses.email_address = %s 
 LIMIT %s
2015-08-19 14:07:06,534 INFO sqlalchemy.engine.base.Engine ('test@test.com', 1)
2015-08-19 14:07:06,535 INFO sqlalchemy.engine.base.Engine SELECT addresses.id AS addresses_id, addresses.email_address AS addresses_email_address, addresses.user_id AS addresses_user_id 
FROM addresses 
WHERE %s = addresses.user_id ORDER BY addresses.id
2015-08-19 14:07:06,535 INFO sqlalchemy.engine.base.Engine (1L,)
[<demo.Address object at 0x7f9a74139350>, <demo.Address object at 0x7f9a741390d0>]
>>> 

注意,上面的用法的前提是存在外键的情况下,如果没有外键,那么可以使用,

query.join(Address, User.id==Address.user_id)    # explicit condition
query.join(User.addresses)                       # specify relationship from left to right
query.join(Address, User.addresses)              # same, with explicit target
query.join('addresses')    

表的别名

>>> from sqlalchemy.orm import aliased
>>> adalias1 = aliased(Address)

子查询

假设我们需要这样一个查询,

mysql> SELECT users.*, adr_count.address_count FROM users LEFT OUTER JOIN
    ->     (SELECT user_id, count(*) AS address_count
    ->         FROM addresses GROUP BY user_id) AS adr_count
    ->     ON users.id=adr_count.user_id;
+----+------+---------------+
| id | name | address_count |
+----+------+---------------+
|  1 | jack |             2 |
+----+------+---------------+
1 row in set (0.00 sec)
# 生成子句,等同于(select user_id ... group_by user_id)
>>> sbq = session.query(Address.user_id, func.count('*').label('address_count')).group_by(Address.user_id).subquery()

# 联接子句,注意子句中需要使用c来调用字段内容
>>> session.query(User.name, sbq.c.address_count).outerjoin(sbq, User.id==sbq.c.user_id).all()
2015-08-19 14:42:53,425 INFO sqlalchemy.engine.base.Engine SELECT users.name AS users_name, anon_1.address_count AS anon_1_address_count
FROM users LEFT OUTER JOIN (SELECT addresses.user_id AS user_id, count(%s) AS address_count
FROM addresses GROUP BY addresses.user_id) AS anon_1 ON users.id = anon_1.user_id
2015-08-19 14:42:53,425 INFO sqlalchemy.engine.base.Engine ('*',)
[('jack', 2L)]
>>>

包含contains

query.filter(User.addresses.contains(someaddress))

数据删除delete

>>> session.delete(jack)
>>> session.query(User).filter_by(name='jack').count()
0

外键配置

在上面的例子中,删除了user-jack,但是address中的数据并没有删除。

cascade字段用来

addresses = relationship("Address", backref='user',
    cascade="all, delete, delete-orphan")

转载于:https://my.oschina.net/lemonwater/blog/1580367

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值