df = pd.DataFrame(np.random.randn(6,4),
index = ['one','two','three','four','five', 'six'],
columns = list('abcd'))
df.index
df.columns
df.head()
df.tail()
df['a']
df.loc['one']
df.loc[['one','four'],['a','c']]
df.iloc[3]
df.describe()
df.sort_values(by = 'c')
df.reindex([1,2,4,6])
df.reindex(index = [2,3], columns =['a','b'])
del df['a']
df.dropna(how = 'all')
df.fillna(0)
df.apply(lambda x : x.max() - x.min())
df['a'].apply | map(lambda x: x + 10)
df.applymap(lambda x: x + 10)
df.idxmax()
df.a.value_counts()[:10]
pd.read_csv('aaa.csv',sep = ',', skiprows = [0,1])
pd.read_csv('aaa.csv',headers = None, names = ['one','two'], nrows = 3)
data.to_csv('aaa.csv', index = False)
pd.read_excel('aaa.xslx', sheetname = 'ajfdla')
pd.read_csv('aaa.csv', index_col = 'location')
data.stack()
data.unstack()
data.duplicated()
data.drop_duplicated( |'one')
data.replace(2, np.nan)
data.k2.map(lambda x : x.replace("beijing", "shanghai"))
data.k2.str.replace("beijing", "shanghai")
bins = [0,10,20,30,40]
cats = pd.cut(data.k1, bins|4)
cats.value_counts()
groupby(df["animal"])['weight'].mean()
groupby("animal")['weight'].mean()
groupby("animal")['weight'].apply(lambda x: x - x.mean())
groupby("animal").size()
gb = groupby(['animal'])
gb.get_group('cat')
dic = {'a':'aa', 'b':'bb'}
data.columns = data.columns.map(lambda x: dic.get(x))
data.group(['leixing','gongzi'])['yuegongshi'].mean().unstack()
(data[['a','b','c']].isnull()).sum()
data = data[['a','b','c']].dropna()
复制代码
DataFrame常用命令
最新推荐文章于 2024-06-22 16:54:28 发布