Search a 2D Matrix

本文介绍了一种高效的矩阵搜索算法,该算法适用于在一个m x n的矩阵中查找特定值,矩阵的特性是每行从左到右排序,且下一行的第一个元素大于上一行的最后一个元素。文章提供了两种解决方案,一种是在垂直方向进行二分查找找到目标行,然后在该行上再次进行二分查找;另一种是将矩阵视为一维数组进行处理。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Write an efficient algorithm that searches for a value in an m x n matrix. This matrix has the following properties:

 

  • Integers in each row are sorted from left to right.
  • The first integer of each row is greater than the last integer of the previous row.

 

For example,

Consider the following matrix:

[
  [1,   3,  5,  7],
  [10, 11, 16, 20],
  [23, 30, 34, 50]
]

Given target = 3, return true.

经典的二分查找的题目。

这题有个特点是每一行有序,且每一行开头数字大于上一行最后的数字,即如果按行flatten,可以拉伸成为一个有序数组。

思路: 1.先在垂直方向二分,找出行,再在行上二分找出列。复杂度O(logm+logn)2.把数组拉成一维处理(坐标处理为连续的一维),时间复杂度为O(logm*n)==O(logm+logn).

思路有了,代码简单,就不贴了。

转载于:https://www.cnblogs.com/sherylwang/p/5786996.html

内容概要:本文提出了一种融合多尺度Wavelet模型的跨文化英语交际智能模型系统(FL-DP-Wavelet),旨在通过多模态数据融合、多尺度特征提取与跨文化适应性建模,提升智能系统的文化敏感性和语境理解能力。该模型通过结合小波变换与深度学习优化语言信号的时频特征提取,基于跨文化敏感性发展模型(DMIS)构建文化适应性评估模块,并设计多模态数据融合框架,增强跨文化场景下的语义解析鲁棒性。实验结果显示,系统在跨文化语境下的语义理解准确率提升12.7%,文化适应性评分优于基线模型15.3%。 适合人群:从事跨文化交流、国际商务、外语教育的研究人员和技术开发者,特别是对智能系统在跨文化场景中的应用感兴趣的学者和工程师。 使用场景及目标:①跨文化商务谈判、教育合作和公共外交等场景中,需要提升智能系统的文化敏感性和语境理解能力;②帮助系统实现实时文化适应,减少因文化差异引起的语义误判和非语言行为冲突;③通过多模态数据融合,增强智能系统在复杂跨文化环境中的语义解析能力。 其他说明:该研究不仅提出了新的理论框架和技术路径,还在实际应用中验证了其有效性和优越性。未来将聚焦于小波-Transformer耦合、联邦学习隐私保护和在线学习算法,进一步推动系统向自主文化融合演进。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值