HDU 1559 最大子矩阵【最大子阵和②】

本文介绍了一种算法问题——寻找给定矩阵中指定大小子矩阵的最大和,并提供了两种解决方案:暴力枚举法和动态规划法。适用于算法竞赛及面试准备。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Problem Description
给你一个m×n的整数矩阵,在上面找一个x×y的子矩阵,使子矩阵中所有元素的和最大。
Input
输入数据的第一行为一个正整数T,表示有T组测试数据。每一组测试数据的第一行为四个正整数m,n,x,y(0<m,n<1000 AND 0<x<=m AND 0<y<=n),表示给定的矩形有m行n列。接下来这个矩阵,有m行,每行有n个不大于1000的正整数。
Output
对于每组数据,输出一个整数,表示子矩阵的最大和。
Sample Input
1
4 5 2 2
3 361 649 676 588
992 762 156 993 169
662 34 638 89 543
525 165 254 809 280
Sample Output
2474
方法一:暴力枚举。
code:
View Code
#include<stdio.h>
#include<string.h>
#define min -999999;
int map[1000][1000];
int sum[1000];
int main()
{
int i,j,k,n,m,tot,max,res,x,y,t;
scanf("%d",&t);
while(t--)
{
scanf("%d%d%d%d",&n,&m,&x,&y);
memset(map,0,sizeof(map));
for(i=1;i<=n;i++)
for(j=1;j<=m;j++)
scanf("%d",&map[i][j]);
max=min;
for(i=1;i<=n-x+1;i++)
{
tot=0;
memset(sum,0,sizeof(sum));
for(j=1;j<=m;j++)
for(k=i;k<x+i;k++)
sum[j]+=map[k][j];
for(j=1;j<=n-y+1;j++)
{
tot=0;
for(k=j;k<j+y;k++)
tot+=sum[k];
if(tot>max)max=tot;
}
}
printf("%d\n",max);
}
return 0;
}

方法②:DP
 
View Code
#include<stdio.h>
#include<string.h>
int map[1000][1000];
int sum[1000];
int main()
{
int p,i,j,max,n,m,x,y,t;
scanf("%d",&t);
while(t--)
{
scanf("%d%d%d%d",&n,&m,&x,&y);
memset(map,0,sizeof(map));
memset(sum,0,sizeof(sum));
for(i=1;i<=n;i++)
for(j=1;j<=m;j++)
{
scanf("%d",&p);
map[i][j]=map[i-1][j]+p;
}
max=0;
for(i=x;i<=n;i++)
{
sum[y]=0;
for(j=1;j<=y;j++)
sum[y]+=map[i][j]-map[i-x][j];
if(sum[y]>max)
max=sum[y];
for(j=y+1;j<=m;j++)
{
sum[j]=sum[j-1]+(map[i][j]-map[i-x][j])-(map[i][j-y]-map[i-x][j-y]);//dp状态转移
if(sum[j]>max)
max=sum[j];
}
}
printf("%d\n",max);
}
return 0;
}
 

转载于:https://www.cnblogs.com/dream-wind/archive/2012/03/14/2396356.html

### HDU 1159 最长公共序列 (LCS) 解题思路 #### 动态规划状态定义 对于两个字符串 `X` `Y`,长度分别为 `n` `m`。设 `dp[i][j]` 表示 `X[0...i-1]` `Y[0...j-1]` 的最长公共序列的长度。 当比较到第 `i` 个字符第 `j` 个字符时: - 如果 `X[i-1]==Y[j-1]`,那么这两个字符可以加入之前的 LCS 中,则有 `dp[i][j]=dp[i-1][j-1]+1`[^3]。 - 否则,如果 `X[i-1]!=Y[j-1]`,那么需要考虑两种情况中的最大值:即舍弃 `X[i-1]` 或者舍弃 `Y[j-1]`,因此取两者较大者作为新的 LCS 长度,即 `dp[i][j]=max(dp[i-1][j], dp[i][j-1])`。 时间复杂度为 O(n*m),其中 n 是第一个字符串的长度而 m 是第个字符串的长度。 #### 实现代码 以下是 Python 版本的具体实现方式: ```python def lcs_length(X, Y): # 初始化维数组用于存储中间结果 m = len(X) n = len(Y) # 创建(m+1)x(n+1)大小的表格来保存问题的结果 dp = [[0]*(n+1) for _ in range(m+1)] # 填充表项 for i in range(1, m+1): for j in range(1, n+1): if X[i-1] == Y[j-1]: dp[i][j] = dp[i-1][j-1] + 1 else: dp[i][j] = max(dp[i-1][j], dp[i][j-1]) return dp[m][n] # 测试数据输入部分可以根据具体题目调整 if __name__ == "__main__": while True: try: a = input().strip() b = input().strip() result = lcs_length(a,b) print(result) except EOFError: break ``` 此程序会读入多组测试案例直到遇到文件结束符(EOF)。每组案例由两行组成,分别代表要计算其 LCS 的两个字符串。最后输出的是它们之间最长公共序列的长度。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值