你的Mac系统识别不了移动硬盘 这个问题怎么解决

当Mac系统无法识别移动硬盘时,可以尝试使用Paragon NTFS For Mac来获取对NTFS格式硬盘的写入权限。下载并安装软件,重启电脑后,插入U盘即可解决识别问题。该软件允许Mac像Windows一样方便地读写NTFS格式的设备。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

有的时候,当我们插入一些移动硬盘的时候,Mac系统居然无法识别。这个时候各位小伙伴一定是抓耳挠腮,且无从下手,如果这时你正在开一个紧急的会议,那就更糟心了,那么这个问题怎么解决呢?

解决方法:

1. 我们只需要下载一个读写神器Paragon NTFS For Mac,去实现对NTFS格式的硬盘和U盘的写入权限,让你的mac像windows一样方便 。可以去NTFS For Mac官网下载;

2. 下载好之后解压安装,然后重启电脑。(如果不会安装可以参考文章:NTFS For Mac如何安装)。

安装ntfs for mac
图一:安装

3. 安装好之后重启电脑。

重启电脑
图二:重启电脑

4. 插入你的U盘这个时候你的U盘就会显示如下图,(如果不会使用可以参考文章:NTFS For Mac如何使用)。

显示可以读写ntfs
图三:Mac识别U盘

只需要这样的简单操作就可以让你的Mac识别U盘啦,其实mac上只提供了它自身磁盘格式(mac os 扩展)等的读写权限,只提供了读的权限给NTFS、FAT32给硬盘和U盘,我们99%使用的硬盘和U盘都是这个格式的,所以大家在mac上插上U盘会出现无法识别的情况。

转载于:https://my.oschina.net/u/2601873/blog/3041462

内容概要:本文详细比较了GPU、TPU专用AI芯片在大模型推理优化方面的性能、成本及适用场景。GPU以其强大的并行计算能力和高带宽显存,适用于多种类型的神经网络模型和计算任务,尤其适合快速原型开发和边缘计算设备。TPU专为机器学习设计,擅长处理大规模矩阵运算密集型任务,如Transformer模型的推理,具有高吞吐量和低延迟特性,适用于自然语言处理和大规模数据中心的推理任务。专用AI芯片通过高度定制化架构,针对特定神经网络模型进行优化,如卷积神经网络(CNN),在处理特定任务时表现出色,同时具备低功耗和高能效比的优势,适用于边缘计算设备。文章还介绍了各自的优化工具和框架,如CUDA、TensorRT、TPU编译器等,并从硬件成本、运营成本和开发成本三个角度进行了成本对比。 适合人群:从事人工智能、深度学习领域的研究人员和技术人员,尤其是对大模型推理优化感兴趣的读者。 使用场景及目标:①帮助读者理解GPU、TPU和专用AI芯片在大模型推理中的优缺点;②为选择适合的硬件平台提供参考依据,以实现最优的推理性能和成本效益;③介绍各种优化工具和框架,帮助开发者高效部署和优化模型。 其他说明:本文不仅涵盖了硬件架构特性,还深入探讨了优化技术和应用场景,旨在为读者提供全面的技术参考。在选择硬件平台时,需综合考虑具体任务需求、预算限制及开发资源等因素。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值